Agilent

M9391A PXle Vector Signal
Analyzer and M9381A PXle

Vector Signal Generator

Programming Guide

for Creating IVI-COM
Console Applications

June 24, 2013
Part Number: M9300-90080

© Agilent Technologies, Inc. 2013

"% Agilent Technologies

Contents

What You Will Learn in this Programming GUIEccvirriririnenceeesesescee sttt 4
Related WEDSITES ...t 5
Related DOCUMENTALION..........c.oviiireeecrc e 5
Understanding the OVerall ProCeSsS FIOW ...ttt ettt 7

Before Programming, Install Hardware, Software, and Software LICENSEScooruveveerierieinrrereenereeseneeneens 7

Understanding the Application Programming Interfaces (API) for the AgModularVsa, M3391A PXle VSA, and

IMOBBXA PXIE VSG ..ottt 8
IVI Instrument Classes (Defined by the IVl FOUNdAtion) ...t 8
VI Compliant or VI Class CoOMPIANt..........coooiiiiieccieeeecete ettt et bbbt enaaee 9
IV DEIVEE TYPES...eiectiececte ettt ettt ae bbbt s e st bbb s bbb s ettt s e bbb s et et s s e nebebassnnntte 9
VI DEIVEE HIBIATCRY ...ttt ettt et bbb e b bt s st bttt s n st et snantete 10
Instrument-Specific Hierarchies for the AgModularVsa, M9391A, and M938XA ... 12

Naming Conventions Used t0 Program IVI DIVETS ...ttt ssessnssssees 14
General IV Naming CONVENTIONSc.ociuiirieerrereireeseie ettt ettt ettt ettt sens 14
[VI-COM Naming CONVENTIONSc.ciuieeeeteiieeeecte ettt sttt bbb bbbttt s st bs st eee 14

Tutorial: Create a Project with IVI-COM USING CHo.oumiieeeecce ettt ettt nane 15
Step 1 — Create @ “Console APPlICALION" ...ttt bbbt bbb 15
StEP 2 — AdU REFEIENCES ...ttt ettt 16
Step 3 — Add USING STALEMENTScvuieecercirci ettt 17

To access the IVI drivers without having to specify or type the full path of each interface or enum...... 17
Step 4 — Create Instances of the IVI-COM DIIVELS ...ttt 18
TO Create AriVEr INSTANCES.........ocueeereirercee et 18
Step 5 — Initialize the DrVer INSTANCES. ..ottt bbb bbb 19
To determine the VsaResourceName and VsgResourceNamecccovvvevieccccive e 19
Setthe TNitialize () PAr@meterS ... ettt ettt ettt ettt et er ettt et eranansnener e 20

Agilent Technologies

Programming Guide (M9300-90080) ' 2 of 56

Callthe Initialize () Method with the Set Parameters...... e 21

Understanding INitialize OPLiONSc.cuvriereerirereireisee ettt sttt ee 22
Understanding M9300A Reference Sharing...........cocvreinineinineseseirescsse et sss st sssssssssne 24
Step 6 — Write the Program StEPS........ ettt et bbb bbb 26
Example: Using the Soft Front Panel to Write Program Commands...........ccccooceenveceiieccceeeeeee e 26
StEP 7 — ClOSE the DIIVEL ...ttt bbb et bbb bt ae bbbt 27
Building and Running a Complete Example Program Using Visual C#..........cooornnninnrnsnenenee e 27
EXAMIPIE PrOGIamS ...ttt bbbt 28
Example Program 1: How to Print Driver Properties, Check for Errors, and Close Driver Sessions........ 28
Understanding PA / FEM MeEaSUIEMENTSccouvririrerireriressiressisessesesssessssessnsesnnes 35
Test Challenges Faced by Power Amplifier TESHNG........cooiicveiiececeecece et 36
Performing a Channel Power Measurement, Using Immediate Trigger........cooooeeeeeecceeeccee e 37

Example Program 2: How to Perform Channel Power Measurement, Using Immediate Trigger (Settings

L{O LAV YN T T OO 37
Performing a WCDMA Power Servo and ACPR Measurement...........ocvcvrereneeneeneencnneseeseeseesesesseseeseeseenees 42
Example Program 3: How to Perform a WCDMA Power Servo and ACPR Measurementc......... 42
Accessing Hardware-Specific Capabilities.........c.ccvviiceieceece ettt 49
GIOSSANY ...ttt ettt et s ae bbb bbb e ae b bt ee b b ee A bt e e A b b s ettt en bt s s e et et s et banas b5
RETEIEBINCES ... 56

Agilent Technologies

Programming Guide (M9300-90080) ' 3 of 56

What You Will Learn in this Programming Guide

This programming guide is intended for individuals who write and run programs to control test-and-
measurement instruments. Specifically, in this programming guide, you will learn how to use

Visual Studio 2008 with the .NET Framework to write IVI-COM Console Applications in Visual C#.
Knowledge of Visual Studio 2008 with the .NET Framework and knowledge of the programming syntax for
Visual C# is required.

Our basic user programming model uses the IVI-COM driver directly and allows customer code to:

e access the IVI-COM driver at the lowest level
e access |Q Acquisition Mode, Power Acquisition Mode, and Spectrum Acquisition Mode
o control the Agilent M9391A PXle Vector Signal Analyzer (VSA) and
Agilent M9381A PXle Vector Signal Generator (VSG) while performing
Power Amplifier (PA) / Front End Module (FEM) Production Tests
e generate waveforms created by Signal Studio software (licenses are required)

Cug:;ln;er IVI-COM Console Applications that are covered in this programming guide are
used to perform acquisition measurements with the AgModularVsa or
I M9391A PXle VSA from signals that are created with the M9381A PXle VSG.
IVI Driver

| VSA and VSG Hardware |

The following PA / FEM Power Measurement Production Tests are covered:

e Example Program 1: How to Print Driver Properties, Check for Errors, and Close Driver Sessions
o Example Program 2: How to Perform a Channel Power Measurement, Using Immediate Trigger
e Example Program 3: How to Perform a WCDMA Power Servo and ACPR Measurement

%% Agilent Technologies
Programming Guide (M9300-90080) : 4 of 56

Related Websites

e Agilent Technologies PXI and AXle Modular Products
o M9391A PXle Vector Signal Analyzer
o M9381A PXle Vector Signal Generator
e Agilent Technologies
o IVI Drivers & Components Downloads
Agilent I/0 Libraries Suite
GPIB, USB, & Instrument Control Products
Agilent VEE Pro
Technical Support, Manuals, & Downloads
o Contact Agilent Test & Measurement

o O O O

e VI Foundation - Usage Guides, Specifications, Shared Components Downloads

e MSDN Online

Related Documentation

To access documentation related to the IVI Driver, use one of the following:

Document Link
Startup Guide”
Includes procedures to help you to unpack, inspect, install (software and M9391A
hardware), perform instrument connections, verify operability, and troubleshoot
your product. Also includes an annotated block diagram. M3381A
Data Sheet”

.. M9391A
In addition to a detailed product introduction, the data sheet supplies full product
specifications. M9381A
LabVIEW Driver Reference (Online Help System) M9391A
Provides detailed documentation of the LabVIEW G Driver API functions.

M9381A

* If these links do not work, you can find these items at:
Start > All Programs > Agilent > M938x
Start > All Programs > Agilent > M9391A

Programming Guide (M9300-90080)

: Agilent Technologies

5 of 56

http://www.agilent.com/find/Modular
http://www.agilent.com/find/M9391A
http://www.agilent.com/find/M9381A
http://www.agilent.com/
http://www.agilent.com/find/ivi
http://www.agilent.com/find/iosuite
http://www.agilent.com/find/io
http://www.agilent.com/find/vee
http://www.agilent.com/find/support
http://www.agilent.com/find/contactus
http://www.ivifoundation.org/
http://msdn.microsoft.com/

Product
cD

0
.
.
.
.
.
.
.
[}
.

v

Options &

Accessories Library

Refine the List

By Type of Content ! User Documentati

Agilent's modular p
delivered to accom
you the information
This documentatig
available documg
when using the

Document Library
@ Manuals
Help File (3)
User Manual (4)

User Manuy;

M382 PXI Vector Signal Analyzer: 7.is s

- vesemn
80 MHz to 26.5.GHz —
——

O
& verncrer h
De—— .

Fram—

D LETT

Access to all DOCUMENTATION noted below

Startup Guide D

* Unpack product

+ Verify shipment

« Install software

* Install & connect
hardware

» Verify operation

+ Troubleshooting

Soft Front Panel (SFP) user interface

Driver Help...
Online Support...

Programming Guide

ata Sheet/Specs Guide

Technical
specifications

« Tutorials
* Code examples

* Measurement
examples

« Programming tips

SFP help system

TE+ + &8
)

ot | e

(o Theory of operation

W BES

O | i Aallan Tochmonics - Block diagram
o « Configuration
W ke |l Soft Front Panel { * Self test

o e | = Ty = * Operational check
i - « Troubleshooting

* Measurements (limited)
| * Field calibration

focus on Method _
»s®

.
.
[enente. GEEPO\JE!S&E!L\I‘A(rresi|

IVI Driver help system

e BB el W e
by ettt vt 2o
1, (owesey

= collpse Al 1 oder all

(W

= LB 15 5 oSSR

IAgMS3TZMeasurements. GetPowerSpectrum Method
sea

s i

Pl b g oy st

et et o e
pr et
Chadgaet VTFs sy,

.

O L W W 2 A=

3
3
§
}
4

LabVIEW Driver help system

B @

o E e D&
Pk Locas Ba Faned Pt Sup o

«[VI-COM and IVI-C driver

programmer’s reference

« Sample programs

Lo | Saach| Favcies
e GetCorrections VI

Returrs logs and hequency ot for the specifd signal conditans and
aettings. Tetllasa 15 8 of &l the oss parameters. Yloss shaulk be adced
YT (11 Tuned Fite or Froseector is usec. TGTer s used t set

irntrument handle

IpFruensy
Ingutlevel —

amenustan

o in 10 o)

Mo (Db

Context Help
with link to
detailed VI
information

Programming Guide (M9300-90080)

nstrument handie

e nstumss Handis at you obtain fom he DA e or

Dvar Wil Ostons Kchon. T hardls entfes 2 partlar

instuman sassicn

[errorin fne errors)

The ertorin cluter can sccept errar nfammaion wired fiom Vs
prevously caled. Use s nfornato to decide any fnctionaiy
SHOLI b bypassed n the ein o enos fom other Vs The pog-up
opton Explan Ertor (o Explan Waming) s morsinormation
Skt e e dpiayed

| P
“The watus boclean s sithar TRUE () for 1 e, of FALSE
(checlansik) fr o et ora wairing. The popup epton Explain

« LabVIEW driver
programmer’s
reference

» Sample programs

- Agilent Technologies

6 of 56

Understanding the Overall Process Flow

o Write source code using Microsoft Visual Studio 2008 with .NET Visual C# running on Windows 7.

o Compile Source Code using the .NET Framework Library.

e Produce an Assembly.exe file — this file can run directly from Microsoft Windows without the need
for any other programs. When using the Visual Studio Integrated Development Environment (IDE),
the Console Applications you write are stored in conceptual containers called Solutions and
Projects. You can view and access Solutions and Projects using the Solution Explorer window
(View > Solution Explorer).

Before Programming, Install Hardware, Software, and Software Licenses
Step 1. Install Microsoft Visual Studio 2008 with .NET Visual C# running on Windows 7.

You can also use a free version of Visual Studio Express 2010 tools from:
http://www.microsoft.com/visualstudio/eng/products/visual-studio-2010-express

The following steps, defined in the Agilent M9391A PXle VSA and M9381A PXle VSG
Startup Guide, M9300-90090, but repeated here must be completed before programmatically
controlling the M9391A PXle VSA and M9381A PXle VSG hardware with these IVI drivers.

Step 2. Unpack and inspect all hardware.

Step 3. Verify the shipment contents.

Step 4. Install the software. Note the following order when installing software!
(If you run the installation .exe, all of these are installed automatically.)

o Install Agilent 10 Libraries Suite (IOLS), Version 16.3.16603.3 or newer; this installation includes
Agilent Connections Expert.

o (Optional) Install Agilent 89600 Vector Signal Analyzer Software, Version 15 or newer.

o Install the M938xA PXle VSG driver software, Version 1.2.525.1 or newer.

o Install the M9391A PXle VSA driver software, includes AgModularVsa, Version 1.0.0.0 or newer
Driver software includes all IVI-COM, IVI-C, and LabVIEW G Drivers along with
Soft Front Panel (SFP) programs and documentation.

All of these items may be downloaded from the Agilent product websites:
o http://www.agilent.com/find/iosuite
o http://www.agilent.com/find/ivi - download installers for Agilent [VI-COM drivers
o http://www.agilent.com/find/m9391a > Select Technical Support > Select the Drivers,
Firmware & Software tab > Download the Instrument Driver.
o http://www.agilent.com/find/m9381a > Select Technical Support > Select the Drivers,
Firmware & Software tab > Download the Instrument Driver.

Agilent Technologies

Programming Guide (M9300-90080) ' 7 of 56

http://www.microsoft.com/visualstudio/eng/products/visual-studio-2010-express
http://www.agilent.com/find/iosuite
http://www.agilent.com/find/ivi
http://www.agilent.com/find/m9391a
http://www.agilent.com/find/m9381a

Step 5. Install the hardware modules and make cable connections.
Step 6. Verify operation of the modules (or the system that the modules create).

Note: Before programming or making measurements, conduct a Self-Test on both the
M9391A PXle VSA and M9381A PXle VSG to make sure there are no problems with the modules,
cabling, or backplane trigger mapping.

Once the software and hardware are installed and verification of operation has been performed, they are
ready to be programmatically controlled.

Understanding the Application Programming Interfaces (API)
for the AgModularVsa, M9391A PXle VSA, and M938xA PXle VSG

The following IVI driver terminology may be used throughout this programming guide.

IVI [Interchangeable Virtual Instruments] — a standard instrument driver model defined by the
IVI Foundation that enables engineers to exchange instruments made by different manufacturers
without rewriting their code. www.ivifoundation.org

Currently, there are 13 IVI Instrument Classes defined by the 1Vl Foundation. The AgModularVsa, the
M9391A PXle VSA, and the M9381A PXle VSG do not belong to any of these 13 IVI Instrument Classes and
are therefore describes as “NoClass” modules.

IVI Instrument Classes (Defined by the IVI Foundation)
e DC Power Supply
e AC Power Supply
e DMM
e Function Generator
e Oscilloscope
e Power Meter
e RF Signal Generator
e Spectrum Analyzer
e Switch
e Upconverter
e Downconverter
e Digitizer
e Counter/Timer

i Agilent Technologies

Programming Guide (M9300-90080) A 8 of 56

http://www.ivifoundation.org/

IVI Compliant or IVI Class Compliant
AgModularVsa, M9391A PXle VSA, and M9381A PXle VSG are IVI Compliant, but not IVI Class Compliant;
they each do not belong to one of the 13 IVl Instrument Classes defined by the VI Foundation.

e |VI Compliant — means that the IVI driver follows architectural specifications for these categories:
o Installation
o Inherent Capabilities
o Cross Class Capabilities
o Style
o Custom Instrument API
e IVl Class Compliant — means that the IVI driver implements one of the 13 IVI Instrument Classes
o Ifaninstrument is IVI Class Compliant, it is also IVI Compliant
o Provides one of the 13 IVI Instrument Class APls in addition to a Custom API
o Custom API may be omitted (unusual)
o Simplifies exchanging instruments

IVI Driver Types

IVI Driver

IVI Specific Driver

MS391A PXle VSA and M938xA PXle VSG

IVI Class-
Compliant
Specific Driver

IVl Class

Driver
DC Power Supply
AC Power Supply
DMM
Function Generator
Qscilloscope
PowerMeter
RF Signal Generator
Spectrum Analyzer
Switch
Upconverter
Downcgrverter
Digitizer
Counter/Timer

IVI Custom

Specific Driver
AgModularVsa

o [Vl Driver
o Implements the Inherent Capabilities Specification
Complies with all of the architecture specifications
May or may not comply with one of the 13 IVI Instrument Classes

o O O

Is either an IVI Specific Driver or an IVI Class Driver

Agilent Technologies

Programming Guide (M9300-90080) 9 of 56

o VI Specific Driver
o Is an IVI Driver that is written for a particular instrument such as the M9391A PXle VSA or
M938xA PXle VSG
e |VI Class Driver
o Is an IVI Driver needed only for interchangeability in IVI-C environments
o The IVI Class may be IVI-defined or customer-defined
o |VI Class-Compliant Specific Driver
o VI Specific Driver that complies with one (or more) of the IVl defined class specifications
o Used when hardware independence is desired
e |Vl Custom Specific Driver
o VI Specific Driver that is not compliant with any one of the VI defined class specifications
o Notinterchangeable
o Agilent has created a common Vector Signal Analyzer (VSA) interface (IAgModularVsa)
that provides commonality between the M9391A PXle VSA and future Agilent modular
vector signal analyzers. This common modular VSA class will make the VSA’s interface-
compatible, which makes transitioning software between them extremely easy. Any
instrument-specific capability can still be accessed via the instrument-specific interface
(i.e. IAgM9391).
= |AgModularVsa is the root interface and contains references to child interfaces,
which in turn contain references to other child interfaces. Collectively, these
interfaces define the instrument-specific hierarchy for the IAgModularVsa.

IVI Driver Hierarchy
When writing programs, you will be using the interfaces (APIs) available to the IVI-COM driver.

o The core of every IVI-COM driver is a single object with many interfaces.
e These interfaces are organized into two hierarchies: Class-Compliant Hierarchy and
Instrument-Specific Hierarchy — and both include the llviDriver interfaces.
o Class-Compliant Hierarchy - Since the AgModularVsa, M9391A PXle VSA, and
M9381A PXle VSG do not belong to one of the 13 IVI Classes, there is no
Class-Compliant Hierarchy in their IVI Driver.

o Instrument-Specific Hierarchy
= The AgModularVsa has a Common Vector Signal Analyzer (VSA) interface
(IAgModularVsa) and provides commonality between the M9391A PXle VSA and
future Agilent modular vector signal analyzers. This common modular VSA class
will make the VSAs interface-compatible, which makes transitioning software
between them extremely easy. Any instrument-specific capability can still be

Agilent Technologies

Programming Guide (M9300-90080) ' 10 of 56

accessed via the instrument-specific interface (i.e. IAgM9391).
e |AgModularVsa is the root interface and contains references to child
interfaces, which in turn contain references to other child interfaces.
Collectively, these interfaces define the instrument-specific hierarchy.

= The M9391A PXle VSA's instrument-specific hierarchy has IAgM9391 at the root
(where AgM9391 is the driver name).
e |AgM9391 is the root interface and contains references to child interfaces,
which in turn contain references to other child interfaces. Collectively,
these interfaces define the instrument-specific hierarchy.

= The M938xA PXle VSG's instrument-specific hierarchy has IAgM938x at the root
(where AgM938x is the driver name).
o |AgM938x is the root interface and contains references to child interfaces,
which in turn contain references to other child interfaces. Collectively,
these interfaces define the instrument-specific hierarchy.

o The llviDriver interfaces are incorporated into both hierarchies: Class-Compliant Hierarchy
and Instrument-Specific Hierarchy.

The llviDriver is the root interface for IVl Inherent Capabilities which are what the

IVI Foundation has established as a set of functions and attributes that all IVl drivers must
include -- irrespective of which IVl instrument class the driver supports. These common
functions and attributes are called IVl inherent capabilities and they are documented in
IVI-3.2 -- Inherent Capabilities Specification. Drivers that do not support any IVl instrument
class such as the M9391A PXle VSA or M938xA PXle VSG must still include these

IVl inherent capabilities.

llviDriver
- IviDriver Close
b Close . .
- @ DriverOperation DriverOperation

@ |dentity Identity
Infialize Initialize
Initialized e s
- @ Utility Initialized
| Utility

.

%.% Agilent Technologies
Programming Guide (M9300-90080) ' 11 of 56

Instrument-Specific Hierarchies for the AgModularVsa, M9391A, and M938xA
The following table lists the instrument-specific hierarchy interfaces for the:
AgModularVsa, M9391A PXle VSA, and M9338xA PXle VSG.

Agilent AgModularVsa
Instrument-Specific Hierarchy

Agilent M9391A PXle VSA
Instrument-Specific Hierarchy

Agilent M938xA PXle VSG
Instrument-Specific Hierarchy

AgM9391 is the driver name

AgM938x is the driver name

IAgModularVsa is the
root interface

IAgM9391 is the root interface

IAgM938x is the root interface

2 1AgModularVsa

...... Abort

------ [?] AcquisitionMade

------ 2] Apply

...... @ Arm

1@ Calibration

...... Close

=@ DriverOperation

------ [7] GetAcquisitioninfo

- Identity

------ [2] Initialize

------ [2] Initialized

=@ |QAcquisition

- List

...... [# MemoryMade

[]....@ Modules

[]—---@ PowerAcquisition

...... RestoreDefaultProperties
@ RF

...... [7] SendSoftware Trigger
- @ SpectrumAcquisition
- @ Status
- System
=@ Triggers

- @ Uity

------ @ WaitForData

...... [2] waitUntilArmed

------ @ WaitUntilSettled

------ WaitUntil Triggered

=0 1AgM9391
------ @ Abort
------ k| AcquisitionMode
------ 2] Apply
------ @ Arm
- @ Calibration
------ @ Close
[]----@ DriverOperation
------ k| GetAcquisitioninfo
- |dentity
------ [9] Initialize
------ [7] Initizlized
=@ [QAcquisition
- List
...... [2] MemoryMode
- @ Modules
[]----@ PowerAcquisition
------ @ RestoreDefaultProperties
=@ RF
------ [7] SendSoftwareTrigger
[]----@ SpectrumAcquisition
- Status
- System
=@ Triggers
[]----@ Utility
------ @ WaitForData
------ @ WaitlntilArmed
------ @ WaitlntilSettled
------ [7] WaitUntil Triggered

=) 1AgM938x

-8 ALC

------ Apply

=@ Calibration

------ Close

[]—---@ DCriverOperation
- Identity

------ Initialize

------ Initialized

- List

]@ Modulation
]@ Modules

- RF

------ SendSoftware Trigger
]@ Status

]@ System

o Triggers

- Utility

a0 e IO e B P

Programming Guide (M9300-90080)

- Agilent Technologies

12 of 56

Note:

To view interfaces available in the IAgModularVsa interface, right-click the AgModularVsaLib library file, in
the References folder, from the Solution Explorer window and select View in Object Browser.

To view the interfaces available in the M9381A PXle VSG, right-click the AgM938xLib library file, in the
References folder, from the Solution Explorer window and select View in Object Browser.

To view interfaces available in the M9391A PXle VSAG, right-click the AgM9391Lib library file, in the
References folder, from the Solution Explorer window and select View in Object Browser.

=+ Agilent.AgM9391.Interop [2] =4 Properties -
=-{} AgilentAgM9391.Interop é . References -
~° AgM9391 = 0 AgM9300Lib ,
=7 AgM9391AcquisitionInfol 12 AgM938xLib f
-7 AgM9391AcquisitionMod =1 AgM9391Lib] §
=7 AgM9391AcquisitionTrige 13 IviDriverLib -
=7 AgM9391AlignmentTypel 13 System ’
=7 AgM9391AmplitudeAlign = System.Core !
= AgM9391BandsEnum i3 System.Data i
~2 AgM9391Board i3 System.Data.DataSetExtensions
“i¢ AgM9391BoardClass 3 System.Xml p
=7 AgM9391CalibrationStatt 13 System.Xml.Ling
=7 AgM9391ChannelFittersh. | i] Program.cs

-t AgM9391Class
=7 AgM9391ConversionEnun
=7 AgM9391DeviceDirectior
= AgM9391ErrorCodesEnun
‘F AgMI39IFFTWindowshal || Assembly Agilent.AgM9391.Interop
 AgMa3D1FixtureLossEnun CaProgram Files (x86)IVI Foundation\IVI\Bin
<" AGM9391FlashWriteTypel \Primary Interop Assemblies

< AQMISOLIFOUtputFilterEr ||y 5 ot A aM9391 Interop.dil
=7 AgM9391InputPathEnum

= AgM9391InputRfFilterSel¢
e e I T e N e s U N

S A A A A

Agilent Technologies

Programming Guide (M9300-90080) 13 of 56

Naming Conventions Used to Program IVI Drivers

General IVl Naming Conventions
e Allinstrument class names start with “lvi”
o Example: IviScope, lviDmm
e Function names
o One or more words use PascalCasing
o First word should be a verb

IVI-COM Naming Conventions
e Interface naming
o Class compliant: Starts with “llvi”
o I<ClassName>
o Example: llviScope, llviDmm

o Sub-interfaces add words to the base name that match the C hierarchy as close as possible

o Examples: llviFgenArbitrary, llviFgenArbitraryWaveform
e Defined values

o Enumerations and enum values are used to represent discrete values in IVI-COM

o <ClassName><descriptive words>Enum
e Example: IviScopeTriggerCouplingEnum

o Enum values don’t end in “Enum” but use the last word to differentiate

Examples: IviScopeTriggerCouplingAC and IviScopeTriggerCouplingDC

Programming Guide (M9300-90080)

Agilent Technologies

14 of 56

Tutorial: Create a Project with IVI-COM Using C#

This tutorial will walk through the various steps required to create a console application using Visual Studio

and C#.
initializa

driver in

Step 1. -
Step 2.
Step 3.
Step 4. -
Step 5. -
Step 6.
Step 7. -

It demonstrates how to instantiate two driver instances, set the resource names and various
tion values, initialize the two driver instances, print various driver properties to a console for each
stance, check drivers for errors and report the errors if any occur, and close both drivers.

Create a "Console Application"

- Add References
- Add using Statements

Create an Instance
Initialize the Instance

- Write the Program Steps (Create a Signal or Perform a Measurement)

Close the Instance

At the end of this tutorial is a complete example program that shows what the console application looks like

if you fo

Step 1

llow all of these steps.

— Create a “Console Application”

Note: Projects that use a Console Application do not show a Graphical User Interface (GUI) display.

Launch Visual Studio and create a new Console Application in Visual C# by selecting:
File > New > Project and select a Visual C# Console Application.

Enter “VsaVsgProperties” as the Name of the project and click OK.

Note: When you select New, Visual Studio will create an empty Program.cs file that includes some
necessary code, including us ing statements. This code is required, so do not delete it.

Select Project and click Add Reference. The Add Reference dialog appears.
For this step, Solution Explorer must be visible (View > Solution Explorer) and the "Program.cs"
editor window must be visible — select the Program.cs tab to bring it to the front view.

Agilent Technologies

Programming Guide (M9300-90080) 15 of 56

Step 2 — Add References
In order to access the AgModularVsa, M9391A PXle VSA, and M9381A PXle VSG driver interfaces,
references to their drivers (DLL) must be created.

1. In Solution Explorer, right-click on References and select Add Reference.
2. From the Add Reference dialog, select the COM tab.

3. Click on any of the type libraries under the “Component Name"” heading and enter the letter “|".

(AIl IVI drivers begin with IVI so this will move down the list of type libraries that begin with “1".)

“g Add Reference ? 2
NET | COM ‘ Projects | Bmwsel Recent |
Component Name Typelib Versi.. Path G
IVI AgM9300 1.2 Type Library 12 C\Program Files (x86\IVI Foundation\IVI\Bin\AgM9300.dIl
IV AgM938x 1.2 Type Library 12 C\Program Files (x86)\IVI Foundation\IVT\Bin\AgM938x.dll
IVI AgM9391 1.0 Type Library 1.0 C\Program Files (x86)\IVI Foundation\IVT\Bin\AgM9391.dll
VT AgModularVsa 1.0 Type Library 1.0 CAPROGRA~2A\IVIFOU~T\IVI\Bin\AGMODU~1.DLL

Note: If you have not installed the IVI driver for the AgModularVsa, M9391A PXle VSA, and M9381A
PXle VSG products (as listed in the previous section titled “Before Programming, Install Hardware,
Software, and Software Licenses”), their IVI drivers will not appear in this list.

Also, the TypeLib Version that appears will depend on the version of the IVI driver that is installed.
The version numbers change over time and typically increase as new drivers are released.

To get the IVI drivers to appear in this list, you must close this Add Reference dialog, install the
IVl drivers, and come back to this section and repeat “Step 2 — Add References”.

4. Scroll to the IVl section and, using Shift-Ctrl, select the following type libraries then select OK.

IVI AgM938x 1.2 Type Library
IVI AgM9391 1.0 Type Library
IVI AgModularVsa 1.0 Type Library

Note: When any of the references for the AgModularVsa, AgM9391A, or AgM938x are added,

the IVIDriver 1.0 Type Libary is also automatically added. This is visible as
IviDriverLib under the project Reference; this reference houses the interface definitions for
IVl inherent capabilities which are located in the file lviDriverTypeLib.dll (dynamically linked library).

Agilent Technologies

Programming Guide (M9300-90080) 16 of 56

5. These selected type libraries appear under the References node, in Solution Explorer, as:

Iél 7 References

- «3 AgM938xLib

- <3 AgM9391Lib

- -0 AgModularVsalib
-« viDriverLib

Note: Your program looks the same as it did before you added the References, but the difference is
that the IVI drivers that you added References to are now available for use. To allow your program

to access the IVI drivers without specifying full path names of each interface or enum, you need to
add using statements to your program.

Step 3 — Add using Statements

All data types (interfaces and enums) are contained within namespaces. (A namespace is a hierarchical
naming scheme for grouping types into logical categories of related functionality. Design tools, such as
Visual Studio, can use namespaces which makes it easier to browse and reference types in your code.)
The C# using statement allows the type name to be used directly. Without the using statement, the
complete namespace-qualified name must be used. To allow your program to access the IVI driver without
having to type the full path of each interface or enum, type the following using statements immediately

below the other using statements; the following example illustrates how to add using statements.

To access the IVI drivers without having to specify or type the full path of each interface or enum

These using statements should be added to your program:
using Ivi.Driver.Interop;

using Agilent.AgM938x.Interop;

using Agilent.AgM9391.Interop;

using Agilent.AgModularVsa.Interop;

Note: You can create sections of code in your program that can be expanded and collapsed by
surrounding the code with #region and #endregion keywords. Selecting the — and + symbols

allows the region to be collapsed and expanded.

ion Specify using Directives the:;i;;s;;g:;za::ves

= using :
using System.Colle
using System.Ling;
using System.Text;
using Ivi.Driver.Interop;
using Agilent.AgM938x.Interop;
using Agilent.AgMS%35%1.Interop;

- using Agilent.AgModularVsa.Interop;

L endregion

Collasped
and

Expanded

Agilent Technologies

Programming Guide (M9300-90080) 4 17 of 56

Step 4 — Create Instances of the IVI-COM Drivers

There are two ways to instantiate (create an instance of) the IVI-COM drivers:

o Direct Instantiation
COM Session Factory

Since the M9391A PXle VSA and M9381A PXle VSG are both considered NoClass modules

(because they do not belong to one of the 13 IVI Classes), the COM Session Factory is not used to create
instances of their IVI-COM drivers. So, the M9391A PXle VSA and M938xA PXle VSG IVI-COM drivers use
direct instantiation. Because direct instantiation is used, their [VI-COM drivers may not be interchangeable
with other VSA and VSG modules.

Agilent has created a common Vector Signal Analyzer (VSA) interface (IAgModularVsa) that provides
commonality between the M9391A PXle VSA and future Agilent modular vector signal analyzers. This
common modular VSA class will make the VSA's interface-compatible, which makes transitioning software
between them extremely easy. Any instrument-specific capability can still be accessed via the instrument-
specific interface (i.e. IAgM9391). So, when creating a driver instance for a VSA, either the IAgModularVsa
interface or the IAgM9391 interface can be used.

To create driver instances
The new operator is used in C# to create an instance of the driver.

IAgModularVsa VsaDriver = (IAgModularVsa) new AgM9391();
IAgM938x VsgDriver = new AgM938x();

...or when using a specific VSA interface such as the IAgM9391:

IAgM9391 VsaDriver = new AgM9391();
IAgM938x VsgDriver new AgM938x () ;

%% Agilent Technologies
Programming Guide (M9300-90080) : 18 of 56

Step b — Initialize the Driver Instances

Initialize () isrequired when using any IVI driver; it establishes a communication link (an

"l/0 session") with an instrument and it must be called before the program can do anything with an

instrument or work in simulation mode.

The Initialize () method has a number of options that can be defined (see Initialize Options below).

In this example, we prepare the Initialize () method by defining only a few of the parameters, then

we call the Initialize () method with those parameters:

To determine the VsaResourceName and VsgResourceName
o [f you are using Simulate Mode, you can set the Resource Name address string to:

string VsaResourceName
string VsgResourceName

Q.
C
\\%II;

o If you are actually establishing a communication link (an "I/0 session") with an instrument, you
need to determine the Resource Name address string (VISA address string) that is needed.
You can use an |0 application such as Agilent Connection Expert, Agilent Command Expert,

National Instruments Measurement and Automation Explorer (MAX), or you can use the
Agilent product’s Soft Front Panel (SFP) to get the physical Resource Name string.

Using the M938xA Soft Front Panel, you might get the following Resource Name address string.

Connect te Instrument

Select Instrument:

Show: |Instruments and Modules |V\

D Simulation Mode

X

Alias ‘ S\Gt‘ Model

‘ Description

2 MS311A
4 M3310A
5 MS301A
6 M3300A
7 MS301A

PXI8::0::0::INSTR
PXI11::0::0::

Selected Instrument:

0::0:

PXI8::0::0::INSTR;PXI11::0::0::INSTR;PXI12::0::0: . INSTR; PXI13::
:INSTR

(~) Advanced

\ ‘Connect] \Close Application

Module M9311A PXle M9310A PXle M9301A PXle M9300A PXle
Name Modulator Source Qutput Synthesizer Reference

Slot 2 4 5 6

Number

VISA PXI18::0::0::INSTR; | PXI11::0::0::INSTR; | PX112::0::0::INSTR; | PXI13::0::0::INSTR;
Address

string VsgResourceName =
“WPXI8::0::0::INSTR;PXTI11::0::0::INSTR;PXI12::0::0::INSTR;PXI13::0::0::INSTR

” .
’

Programming Guide (M9300-90080)

Agilent Technologies

19 of 56

Using the M9391A Soft Front Panel, you might get the following Resource Name address string.

Connect to Instrument [Z][X]
Select Instrument:
Show: Modules \V| [simulation Mode
‘Ahas | Slot | Model | Description

5 MS301A
M9300A
M9301A
M9350A
M9214A

0o~ o

[PXI14::0::0: -INSTR;PXI10::0::0::INSTR; PXI9::0::0: -INSTR |
Module M9301A PXle M9350A PXle M9214A PXle
Name Synthesizer Downconverter IF Digitizer
Slot 7 8 9
Number
VISA PXI14::0::0:INSTR; | PXI10::0::0:INSTR; | PXI19::0::0::INSTR;
Address

string VsaResourceName =
“WPXT14::0::0::INSTR;PXI10::0::0::INSTR;PXI9::0::0::INSTR;

Set the Initialize () Parameters
Note: Although the Initialize () method has a number of options that can be defined (see Initialize

Options below), we are showing this example with a minimum set of options to help minimize complexity.

// The M9300A PXIe Reference should be included as one of the modules in
// either the M9381A PXIe VSG configuration of modules or the AgModularVsa
// configuration of modules (or the M9391A PXIe VSA configuration of modules) .

// If the M9300A PXIe Reference is only included in one configuration,
// that configuration should be initialized first.

// See “Understanding M9300A Frequency Reference Sharing”.

string VsgResourceName =
“PXI8::0::0::INSTR;PXI11::0::0::INSTR;PXI12::0::0::INSTR;PXI13::0::0::INSTR”;

string VsaResourceName =
“PXTI14::0::0::INSTR;PXI10::0::0::INSTR;PXI9::0::0::INSTR;

bool IdQuery = true;
bool Reset = true;

string VsgOptionString = "QueryInstrStatus=true, Simulate=false, DriverSetup=
Model=VSG, Trace=false";

string VsaOptionString = "QueryInstrStatus=true, Simulate=false, DriverSetup=
Model=VSA, Trace=false";

- Agilent Technologies
Programming Guide (M9300-90080) : 20 of 56

Call the Initialize () Method with the Set Parameters

// Initia
VsgDriver
Console.W

VsaDriver
Console.W

$region In
string Vsg
string Vsa

bool IdQue
bool Reset

string Vsg
string Vsa

VsgDriver.
Console.Wr

VsaDriver.

lize the drivers
.Initialize (VsgResourceName, IdQuery, Reset, VsgOptionString);
ritelLine ("VSG Driver Initialized");

.Initialize (VsaResourceName, IdQuery, Reset, VsaOptionString);
ritelLine ("VSA Driver Initialized");

itialize Driver Instances
ResourceName = "PXIB::0::0::INSTR;PXI11::0::0::INSTR;PXI12::0::0:
ResourceName = "PKI14::0::0::INSTR;PXKI10::0::0::INSTR;PKIS::0::0::INSTR";

:INSTR;PXI13::0::0::INSTR";

ry = true;

= true;

OptionString = "QueryInstrStatus=true, Simulate=false, DriverSetup= Model=V33, Trace=false";
OptionString = "QueryInstrStatus=true, Simu;ate:fa;seL DriverSetup= Model=VSA, Trace=false";

Initialize (VsgResourceName, IdQuery, Reset, VsgOptionString);
itelLine ("VSG Driver Initialized"):;

Initialize (VsaResourceName, IdQuery, Reset, VsaoptionString):

Console.Wy
#endregion|

void [AgModularVsa.Initialize(string ResourceName, bool IdQuery, bool Reset, string OptionString)
(The documentation cache is still being constructed. Please try again in a few seconds.)

The above example shows how IntelliSense is invoked by simply rolling the cursor over the word

“Ini

tialize”.

Note: One of the key advantages of using C# in the Microsoft Visual Studio Integrated Development

Environment (IDE) is IntelliSense. IntelliSense is a form of auto-completion for variable names and

functions and a convenient way to access parameter lists and ensure correct syntax. This feature

also enhances software development by reducing the amount of keyboard input required.

Agilent Technologies

Programming Guide (M9300-90080)

21 of 56

Understanding Initialize Options

The following table describes options that are most commonly used with the Initialize () method.

Property Type and Example Value

Description of Property

string ResourceName =

PXI[bus]::device[::function] [::INSTR]

string ResourceName =
“WPXTI13::0::0::INSTR;

PXI14::0::0::INSTR;
PXI15::0::0::INSTR;
PXI16::0::0::INSTR”;

VsgResourceName or
VsaResourceName — The driver is typically
initialized using a physical resource name
descriptor, often a VISA resource descriptor.

See the above procedure:
“To determine the VsgResourceName and
VsaResourceName”

bool IdQuery = true;

IdQuery - Setting the ID query to false
prevents the driver from verifying that the
connected instrument is the one the driver was
written for because if TdQuery is set to true,
this will query the instrument model and fail
initialization if the model is not supported by
the driver.

bool Reset

true;

Reset - Setting Reset to true tells the driver
to initially reset the instrument.

string OptionString =

"QueryInstrStatus=true, Simulate=true,

OptionString - Setup the following

initialization options:

O QueryInstrStatus=true
(Specifies whether the IVI specific driver
queries the instrument status at the end of
each user operation.)

0 Simulate=true (Setting Simulate
to true tells the driver that it should not
attempt to connect to a physical
instrument, but use a simulation of the
instrument instead.)

o Cache=false (Specifies whether or

not to cache the value of properties.)
o InterchangeCheck=false

(Specifies whether the IVI specific driver
performs interchangeability checking.)
o RangeCheck=false (Specifies

Programming Guide (M9300-90080)

Agilent Technologies

22 of 56

whether the IVI specific driver validates

attribute values and function parameters.)
RecordCoercions=false

(Specifies whether the IVI specific driver
keeps a list of the value coercions it makes
for Vilnt32 and ViReal64 attributes.)

DriverSetup= Trace=false";

DriverSetup= (Thisis used to
specify settings that are supported by the
driver, but not defined by IVI. If the Options
String parameter (OptionString in this
example) contains an assignment for the
Driver Setup attribute, the Initialize
function assumes that everything following
'‘DriverSetup="is part of the assignment.)
Model=VSG or Model=VSA
(Instrument model to use during
simulation.)

Trace=false (Iffalse, an output trace
log of all driver calls is not saved in an XML
file.)

If these drivers were installed, additional information can be found under “Initializing the IVI-COM Driver”

from the following:

AgM938x IVI Driver Reference

Start > All Programs > Agilent IVI Drivers > AgM938x Source > Documentation

AgM9391 IVI Driver Reference

Start > All Programs > Agilent IVl Drivers > AgM9391A VSA > Documentation

Programming Guide (M9300-90080)

Agilent Technologies

23 of 56

Understanding M9300A Reference Sharing

The M9300A PXle Reference can be shared by up to five configurations of modules that can be made up of
the M9391A PXle VSA or the M9381A PXle VSG or both. The M9300A PXle Reference must be included as
one of the modules in at least one of these configurations. The configuration of modules that is initialized
first must include the M9300A PXle Reference so that the other configurations that depend on the reference
signal get the signal they are expecting. If the configuration of modules that is initialized first does not
include the M9300A PXle Reference, unlock errors will occur.

Example: M9300A PXle Reference as Part of the M9381A PXle VSG Configuration of Modules
The M9381A PXle VSG should be initialized first before initializing the VSA if:

o M9381A PXle VSG configuration of modules includes:

M9311A PXle Modulator

M9310A PXle Source Output

M9301A PXle Synthesizer

M9300A PXIle Reference // Note that the M9300A PXle Reference is part of the M9381A PXle VSG

configuration of modules.

o O O O

string VsgResourceName =
“PXI8::0::0::INSTR;PXI11::0::0::INSTR;PXI12::0::0::INSTR;PXI13::0::0:
:INSTR”;

o M9391A PXle VSA configuration of modules includes:
o M9301A PXle Synthesizer
o M9350A PXle Downconverter
o M9214A PXle IF Digitizer

string VsaResourceName =
“WPXT14::0::0::INSTR;PXI10::0::0::INSTR;PXI9::0::0::INSTR”;

Example: M9300A PXle Reference as Part of the M9391A PXle VSA Configuration of Modules
The M9391A PXle VSA should be initialized first before initializing the M9381A PXle VSG if:

o M9381A PXle VSG configuration of modules includes:
o M9311A PXle Modulator
o M9310A PXle Source Qutput
o M9301A PXle Synthesizer

string VsgResourceName =
“PXI8::0::0::INSTR;PXI11::0::0::INSTR;PXI12::0::0::INSTR”;

Agilent Technologies

Programming Guide (M9300-90080) 4 24 of 56

o M9391A PXle VSA configuration of modules includes:
o M9300A PXle Reference // Note that the M9300A PXle Reference is part of the M9391A PXle VSA
configuration of modules.
o M9301A PXle Synthesizer
o M9350A PXle Downconverter
o M9214A PXle IF Digitizer

string VsaResourceName =
“PXTI14::0::0::INSTR; PXI10::0::0::INSTR;PXI9::0::0::INSTR;PXI13::0::0:
:INSTR;

Example: M9300A PXle Reference as Part of the Both Configurations of Modules
The M9391A PXle VSA or the M9381A PXle VSG can be initialized first since the
M9I300A PXle Reference is included in both configurations of modules:

o M9381A PXle VSG configuration of modules includes:

M9311A PXle Modulator

M9310A PXle Source Output

M9301A PXle Synthesizer

M9300A PXle Reference // Note that the M9300A PXle Reference is part of the M9381A PXle VSG
configuration of modules.

o O O O

string VsgResourceName =
“PXI8::0::0::INSTR;PXTI11::0::0::INSTR;PXI12::0::0::INSTR”;PXI13::0::0
: :INSTR;

o M9391A PXle VSA configuration of modules includes:
o M9300A PXle Reference // Note that the M9300A PXle Reference is part of the M9391A PXle VSA
configuration of modules.
o M9301A PXle Synthesizer
o M9350A PXle Downconverter
o M9214A PXle IF Digitizer

string VsaResourceName =

“PXTI14::0::0::INSTR; PXI10::0::0::INSTR;PXI9::0::0::INSTR;PXI13::0::0:
:INSTR;

<. Agilent Technologies
Programming Guide (M9300-90080) : 25 of 56

Step 6 — Write the Program Steps

At this point, you can add program steps that use the driver instances to perform tasks.

Example: Using the Soft Front Panel to Write Program Commands

You may find it useful when developing a program to use the instrument's Soft Front Panel (SFP)

"Driver Call Log"; this driver call log is used to view a list of driver calls that have been performed when

changes are made to the controls on the soft front panel.

In this example, open the Soft Front Panel for the M938xA PXle VSG and perform the following steps:

1. Set the output frequency to 1 GHz.
2. Set the output level to 0 dBm.

3. Enable the ALC.

4. Enable the RF Output.

AgM938x is the driver name used by the SFP.

vsgDriver is the instance of the driver that is used
in this example. This instance would have been
created in, “Step 4 — Create Instances of the
M9381A and M9391A".

IAgM938x VsgDriver = new AgM938x();

7 —
Driver Call Log X
Call History:
AgM938x.RF.Frequency = 1000000000; A
AgM938x.Driver.List. WaitUntilComplete();
AgMa38x.Apply();
AgM938x.RF.Level = 0;
AgM938x.Driver.List. WaitUntilComplete();
AgM938x.Apply();
AgM938x.Driver.List. WaitUntilComplete(); =
AgM938x.RF.ALC.Enabled = True;
AgM938x.Driver.List. WaitUntilComplete();
AgMa38x.Apply();
AgM938x.RF.OutputEnabled = True;
AgM938x.Driver.List. WaitUntilComplete();
AgM938x.Apply(); =
¥
[Save As...] [Clear History} [Close]

// Set the output frequency to 1 GHz
VsgDriver.RF.Frequency = 1000000000;
// Set the output level to 0 dBm
VsgDriver.RF.Level = 0;

// Enables the ALC
VsgDriver.ALC.Enabled = true;

// Enables the RF Output
VsgDriver.RF.OutputEnabled = true;
// Waits until the list is finished or the
specified time passes

bool retval =
VsgDriver.List.WaitUntilComplete () ;

..or you could even use:

// Waits 100 ms until output is settled
before producing signal

bool retval =
VsgDriver.RF.WaitUntilSettled (100) ;

Programming Guide (M9300-90080)

Agilent Technologies

26 of 56

Step 7 — Close the Driver

Calling Close () atthe end of the program is required by the IVl specification when using any IVI driver.

Important! Close () may be the most commonly missed step when using an IVI driver. Failing to do this
could mean that system resources are not freed up and your program may behave unexpectedly on
subsequent executions.

{
if (VsaDriver!= null && VsaDriver.Initialized)
{
// Close the VSA driver
VsaDriver.Close() ;
Console.WriteLine ("VSA Driver Closed\n");
}
if (VsgDriver != null && VsgDriver.Initialized)
{
// Close the VSG driver
VsgDriver.Close() ;
Console.WriteLine ("VSG Driver Closed");
}
}

Building and Running a Complete Example Program Using Visual C#

Build your console application and run it to verify it works properly.

1. Open the solution file SolutionNameThatYouUsed.sIn in Visual Studio 2008.
2. Set the appropriate platform target for your project.

In many cases, the default platform target (Any CPU) is appropriate. But, if you are using a 64-bit PC
(such as Windows 7) to build a .NET application that uses a 32-bit IVI-COM driver, you may need to
specify your project's platform target as x86.

3. Choose Project > ProjectNameThatYouUsed Properties and select "Build | Rebuild Solution".

Alternate: From the Debug menu, click Start Debugging or press the F5 key.

Example programs may be found by selecting:
C:\Program Files (x86)\Agilent\M9391\Help\Examples

Agilent Technologies

Programming Guide (M9300-90080) ' 27 of 56

Example Programs

Example Program 1: How to Print Driver Properties, Check for Errors, and Close Driver Sessions

The following example code builds on the previously presented “Tutorial: Creating a Project with IVI-COM

Using C#" and demonstrates how to instantiate two driver instances, set the resource names and various

initialization values, initialize the two driver instances, print various driver properties for each driver

instance, check drivers for errors and report the errors if any occur, and close the drivers.

Example programs may be found by selecting:
C:\Program Files (x86)\Agilent\M9391\Help\Examples

-1// Copy the following example code and compile it as a C# Console Rpplication
L// Example VsaVsgProperties.cs
HE ecify using Directives

[Clnamespace VsaVsgProperties
{
class Program
{

- static void Main(stringl] args)

{
// Create driver instances
TAgM938x VsgDriver = new AgMS38x();
IAgModularVsa VsaDriver = (IAgModularVsa)new ABgM9321();
try
{
[+]
[+]
I +]
{+] Check for Errors
}
catch (Exception ex)
{
Console.WriteLine (ex.Message) ;
}
finally
{
[+ |L ose Driver Instances|
}
Console.WriteLine ("Done - Press Enter to Exit"):
Console.ReadLine();
F H
F }
-1
=1/ *
Disclaimer

® 2013 RAgilent Technologies Inc. All rights reserved.

- Agilent Technologies
Programming Guide (M9300-90080)

28 of 56

Example Program 1: How to Print Driver Properties, Check for Errors, and Close Driver Sessions
// Copy the following example code and compile it as a C# Console Application

// Example VsaVsgProperties.cs
#region Specify using Directives
using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using Ivi.Driver.Interop;

using Agilent.AgM938x.Interop;
using Agilent.AgM9391.Interop;
using Agilent.AgModularVsa.Interop;
#endregion

namespace VsaVsgProperties
{
class Program
{
static void Main(string[] args)
{
// Create driver instances
IAgM938x VsgDriver =
IAgModularVsa VsaDriver =
try
{
#region Initialize Driver Instances
string VsgResourceName =

"PXI8::0::0::INSTR;PXI11::0::0::INSTR;PXI12:

string VsaResourceName =

"PXI14::0::0::INSTR;PXI10::0::0::INSTR;PXIO9::

true;
true;

bool IdQuery
bool Reset =

string VsgOptionString =
Model=VSG, Trace=false";

string VsaOptionString =
Model=VSA, Trace=false";

VsgDriver.Initialize (VsgResourceName,

"QueryInstrStatus=true,

"QueryInstrStatus=true,

new AgM938x () ;
(IAgModularVsa)

new AgM9391 () ;

:0::0::INSTR; PXI13::0::0::INSTR";

0::0::INSTR";

Simulate=false, DriverSetup=

Simulate=false,

DriverSetup=

IdQuery, Reset, VsgOptionString);

Console.WriteLine ("VSG Driver Initialized"):;

VsaDriver.Initialize (VsaResourceName,

IdQuery, Reset, VsaOptionString);

Console.WriteLine ("VSA Driver Initialized\n\n");

#endregion

#region Print Driver Properties

// Print IviDriverIdentity properties
{or",
{or",
{or",
{or",
{or",
{or",

Console.WritelLine ("Identifier:
Console.WriteLine ("Revision:
Console.WritelLine ("Vendor:
Console.WritelLine ("Description:
Console.WriteLine ("Model:
Console.WriteLine ("FirmwareRev:

for the PXIe VSG
VsgDriver.Identity.Identifier);
VsgDriver.Identity.Revision);
VsgDriver.Identity.Vendor) ;
VsgDriver.Identity.Description);
VsgDriver.Identity.InstrumentModel) ;

VsgDriver.Identity.InstrumentFirmwareRevision);

Console.WriteLine ("Simulate:

{0}\n",

VsgDriver.DriverOperation.Simulate) ;

// Print IviDriverIdentity properties for the PXIe VSA

Console.WritelLine ("Identifier:

Programming Guide (M9300-90080)

{or",

VsaDriver.Identity.Identifier);

- Agilent Technologies
29 of 56

Console.WritelLine ("Revision: {0}", VsaDriver.Identity.Revision);

Console.WriteLine ("Vendor: {0}", VsaDriver.Identity.Vendor) ;
Console.WritelLine ("Description: {0}", VsaDriver.Identity.Description);
Console.WriteLine ("Model: {0}", VsaDriver.Identity.InstrumentModel) ;

Console.WriteLine ("FirmwareRev: {0}",

VsaDriver.Identity.InstrumentFirmwareRevision) ;

}

Console.WriteLine ("Simulate: {0}\n", VsaDriver.DriverOperation.Simulate);
#endregion

#region Perform Tasks

// TO DO: Exercise driver methods and properties.

// Put your code here to perform tasks with PXIe VSG and PXIe VSA.
#endregion

#region Check for Errors
// Check VSG instrument for errors

int VsgErrorNum = -1;
string VsgErrorMsg = null;
while (VsgErrorNum != 0)

{
VsgDriver.Utility.ErrorQuery(ref VsgErrorNum, ref VsgErrorMsg);
Console.WriteLine ("VSG ErrorQuery: {0}, {1}\n", VsgErrorNum, VsgErrorMsg);
}

// Check VSA instrument for errors

int VsaErrorNum = -1;
string VsaErrorMsg = null;
while (VsaErrorNum != 0)

{
VsaDriver.Utility.ErrorQuery(ref VsaErrorNum, ref VsaErrorMsqg);
Console.WriteLine ("VSA ErrorQuery: {0}, {1}\n", VsaErrorNum, VsaErrorMsgqg);
}

#endregion

catch (Exception ex)

{

}

Console.WritelLine (ex.Message) ;

finally

{

if (VsgDriver != null && VsgDriver.Initialized)
{
// Close the driver
VsgDriver.Close() ;
Console.WriteLine ("VSG Driver Closed");
}
if (VsaDriver != null && VsaDriver.Initialized)
{
// Close the driver
VsaDriver.Close () ;
Console.WriteLine ("VSA Driver Closed\n");

Console.WritelLine ("Done - Press Enter to Exit"):;
Console.ReadLine () ;

Agilent Technologies

Programming Guide (M9300-90080) 30 of 56

Disclaimer
© 2013 Agilent Technologies Inc. All rights reserved.

You have a royalty-free right to use, modify, reproduce and distribute this Sample Application (and/or any modified
version) in any way you find useful, provided that you agree that Agilent Technologies has no warranty, obligations or
liability for any Sample Application Files.

Agilent Technologies provides programming examples for illustration only. This sample program assumes that you are
familiar with the programming language being demonstrated and the tools used to create and debug procedures.
Agilent Technologies support engineers can help explain the functionality of Agilent Technologies software
components and associated commands, but they will not modify these samples to provide added functionality or

construct procedures to meet your specific needs.

USG Driver Initialized
USA Driver Initialized

Identifier: AgM938x
isi 1.2.525.1
Agilent Technologies
IUI Driver for AgM938x family of Modular Uector Signal Generators [
64-bit.]
M9381A
: $im1.2.525.1

True

AgM9391
1.0.32.0

Agilent Technologies
IUI driver for the Agilent M9391 family of USA [Compiled for 64-bit

M9391A
: Sim1.0.32.0
True
USG ErrorQuery: O, No Error.

USA ErrorQuery: O, No Error.

USG Driver Closed
USA Driver Closed

Agilent Technologies

Programming Guide (M9300-90080) 31 of 56

Alternate Example Program 1: How to Print Driver Properties, Check for Errors, and Close Driver Sessions

The following example program is an alternative way of performing the same tasks as the previous
Example Program 1, but uses the 12919391 interface instead of the 1agModularvsa interface.

When comparing this example program to Example Program 1, you should note that it does not include the
using Agilent.AgModularVsa.Interop; and also does not have to have the IVI AgModularVsa

1.0 Type Library reference added. By using the 12g19391 interface along with the driver instance
variable M9391driver, this code would have to be updated to be used with a different future VSA module.

// Copy the following example code and compile it as a C# Console Application
// Example VsaVsgProperties Alternate.cs
#region Specify using Directives

using System;

using System.Collections.Generic;

using System.Ling;

using System.Text;

using Ivi.Driver.Interop;

using Agilent.AgM938x.Interop;

using Agilent.AgM9391.Interop;

#endregion

namespace M9381 M9391 ConsoleApp Properties
{
class Program
{
static void Main(string[] args)
{
// Create driver instances
TAgM938x M938ldriver = new AgM938x();
IAgM9391 M9391driver = new AgM9391();
try
{
#region Initialize Driver Instances
string M9381ResourceName =
"PXI8::0::0::INSTR;PXI11::0::0::INSTR;PXI12::0::0::INSTR;PXI13::0::0::INSTR";
string M9391ResourceName =
"PXT14::0::0::INSTR;PXI10::0::0::INSTR;PXI9::0::0::INSTR";

bool IdQuery = true;
bool Reset = true;

string M93810ptionString = "QueryInstrStatus=true, Simulate=false,
DriverSetup= Model=M9381A, Trace=false";

string M93910ptionString = "QueryInstrStatus=true, Simulate=false,
DriverSetup= Model=M9391A, Trace=false";

M938ldriver.Initialize (M9381ResourceName, IdQuery, Reset, M93810ptionString);

Agilent Technologies

Programming Guide (M9300-90080) A 32 of 56

Console.WriteLine ("M9381A Driver Initialized");

M9391driver.Initialize (M9391ResourceName, IdQuery, Reset, M93910ptionString);
Console.WriteLine ("M9391A Driver Initialized\n\n");
#endregion

#region Print Driver Properties
// Print IviDriverIdentity properties for the M9381A PXIe VSG
Console.WritelLine ("Identifier: {0}", M938ldriver.Identity.Identifier);

Console.WriteLine ("Revision: {0}", M938ldriver.Identity.Revision);
Console.WritelLine ("Vendor: {0}", M938ldriver.Identity.Vendor) ;
Console.WritelLine ("Description: {0}", M938ldriver.Identity.Description);
Console.WriteLine ("Model: {0}", M938ldriver.Identity.InstrumentModel) ;

Console.WriteLine ("FirmwareRev: {0}",
M938ldriver.Identity.InstrumentFirmwareRevision) ;
Console.WriteLine ("Simulate: {0}\n", M938ldriver.DriverOperation.Simulate) ;

// Print IviDriverIdentity properties for the M9391A PXIe VSA
Console.WriteLine ("Identifier: {0}, M9391ldriver.Identity.Identifier);

Console.WritelLine ("Revision: {0}", M9391driver.Identity.Revision);
Console.WriteLine ("Vendor: {0}", M9391ldriver.Identity.Vendor) ;
Console.Writeline ("Description: {0}", M9391ldriver.Identity.Description);
Console.WriteLine ("Model: {0}", M9391ldriver.Identity.InstrumentModel) ;

Console.WriteLine ("FirmwareRev: {0}",
M9391ldriver.Identity.InstrumentFirmwareRevision) ;

Console.WriteLine ("Simulate: {0}\n", M9391driver.DriverOperation.Simulate) ;

#endregion

#region Perform Tasks

// TO DO: Exercise driver methods and properties.

// Put your code here to perform tasks w/ M9381A PXIe VSG and M9391A PXIe VSA.
#endregion

#region Check for Errors
// Check M9381A instrument for errors

int M938lerrorNum = -1;
string M938lerrorMsg = null;
while (M938lerrorNum != 0)

{
M938ldriver.Utility.ErrorQuery(ref M938lerrorNum, ref M938lerrorMsqg) ;

Console.WriteLine ("M9381A ErrorQuery: {0}, {1}\n", M938lerrorNum,
M938lerrorMsqg) ;
}

// Check M9391A instrument for errors

int M939lerrorNum = -1;
string M939lerrorMsg = null;
while (M939lerrorNum != 0)

{
M9391driver.Utility.ErrorQuery(ref M9391lerrorNum, ref M939lerrorMsqg) ;

Console.WriteLine ("M9391A ErrorQuery: {0}, {1}\n", M939lerrorNum,
M939lerrorMsqg) ;

}

#endregion
}
catch (Exception ex)
{

Console.WritelLine (ex.Message) ;
}
finally
{

Agilent Technologies

Programming Guide (M9300-90080) 33 of 56

if (M938ldriver != null && M938ldriver.Initialized)

{
// Close the driver

M9381driver.Close () ;
Console.WriteLine ("M9381A Driver Closed");

if (M9391driver != null && M9391driver.Initialized)

{
// Close the driver

M9391driver.Close() ;
Console.WriteLine ("M9391A Driver Closed\n");

}

Console.WriteLine ("Done - Press Enter to Exit");
Console.ReadLine () ;

Disclaimer
© 2013 Agilent Technologies Inc. All rights reserved.

You have a royalty-free right to use, modify, reproduce and distribute this Sample Application (and/or any modified
version) in any way you find useful, provided that you agree that Agilent Technologies has no warranty, obligations or

liability for any Sample Application Files.

Agilent Technologies provides programming examples for illustration only. This sample program assumes that you are
familiar with the programming language being demonstrated and the tools used to create and debug procedures.
Agilent Technologies support engineers can help explain the functionality of Agilent Technologies software
components and associated commands, but they will not modify these samples to provide added functionality or

construct procedures to meet your specific needs.

Agilent Technologies

Programming Guide (M9300-90080) ' 34 of 56

Understanding PA / FEM Measurements

The RF front end of a product includes all of the components between an antenna and the baseband device
and the purpose of an RF front end semiconductor is to upconvert a baseband signal to RF that can be used
for transmission by an antenna. It can also be used to downconvert an RF signal that can be processed with
ADC circuitry. As an example, the RF signal that is received by a cellular phone is the input into the front
end circuitry and the output is a down-converted analog signal in the intermediate frequency (IF) range. The
down-converted signal is the input to a baseband device, an ADC. For the transmit side, a DAC generates
the signal to be up-converted, amplified, and sent to the antenna for transmission. Depending on whether
the system is a Wi-Fi, GPS, or cellular radio will require different characteristics of the front end devices.

RF front end devices fall into a few major categories: RF Power Amplifiers, RF Filters and Switches, and
FEMs [Front End Modules].

o RF Power Amplifiers and RF Filters and Switches typically require the following:

o PA [Power Amplifier] — Production Tests include:

= Channel Power - Power Acquisition Mode is used to return one value back through
the API.

= ACPR [Adjacent Channel Power Ratio] — When making fast ACPR measurements,
"Baseband Tuning" is used to digitally tune the center frequency in order to make
channel power measurements, at multiple offsets, using the Power Acquisition
interface.

= Servo Loop - When measuring a power amplifier, one of the key measurements is
performing a Servo Loop because when you measure a power amplifier:
e it is typically specified at a specific output power
o there is a need to adjust the source input level until you measure the exact
power level - to do this, you will continually adjust the source until you
achieve the specified output power then you make all of the ACPR and
harmonics parametric measurements at that level.

e FEMs [Front End Modules] — which could be a combination of multiple front end functions in a
single module or even a "Switch Matrix" that switches various radios (such as Wi-Fi, GSM, PCS,

Bluetooth, etc.) to the antenna.

Agilent Technologies

Programming Guide (M9300-90080) ' 35 of 56

Test Challenges Faced by Power Amplifier Testing
o The need to quickly adjust power level inputs to the device under test (DUT).
e The need to assess modulation performance (i.e., ACPR and EVM) at high output power levels.

The figure below shows a simplified block diagram for the M9381A PXle VSG and M9391A PXle VSA in a
typical PA / FEM test system.

Typical power amplifier modules require an input power level of 0 to + 5 dBm, digitally modulated according
to communication standards such as WCDMA or LTE. The specified performance of the power amplifier or
front end module is normally set at a specific output level of the DUT. If the devices have small variations in
gain, it may be necessary to adjust the power level from the VSG to get the correct output level of the DUT.
Only after the DUT output level is set at the correct value can the specified parameters be tested. The time
spent adjusting the VSG to get the correct DUT output power can be a major contributor to the test time and
the overall cost of test.

The VSG is connected to the DUT using a cable and switches. The switching may be used to support testing
of multi-band modules or multi-site testing. The complexity of the switching depends on the number of
bands in the devices and the number of test sites supported by the system. The DUTs are typically inserted
into the test fixture using an automated part handler. In some cases, several feet of cable is required
between the VSG and the input of the DUT.

RF In [> RF Out .
RF In [> RF Out

Signal Generator
RF Out

Signal Analyzer
RF In

buyoymg
buyoymg

The combination of the RF cables and the switching network can add several dB of loss between the output
of the VSG and the input of the DUT, which requires higher output levels from the VSG. Since the tests are
performed with a modulated signal, the VSG must also have adequate modulation performance at the higher
power levels.

Agilent Technologies

Programming Guide (M9300-90080) . 36 of 56

Performing a Channel Power Measurement, Using Immediate Trigger

Standard Sample Channel Filter | Channel Filter | Channel Filter | Channel
Rate Type Parameter Bandwidth Offsets

WCDMA 5 MHz 0.2 3.84 MHz 5, 10 MHz

LTE10 MHz FDD 11.25 Rectangular N/A 9 MHz 10, 20 MHz
MHz

LTE10 MHzTDD 11.25 Rectangular N/A 9 MHz 10, 20 MHz
MHz

1xEV-DO 2 MHz RRC 0.22 1.23 MHz 1.25, 2.5 MHz

TD-SCDMA 2 MHz RRC 0.22 1.28 MHz 1.6, 3.2 MHz

GSM/EDGE 1.25 MHz Gaussian 0.3 271 kHz

Channel

GSM/EDGE 1.25 MHz TBD TBD 30 kHz 400, 600kHz

ORFS

Example Program 2: How to Perform Channel Power Measurement, Using Inmediate Trigger
(Settings for WCDMA Signal)

The following example code demonstrates how to instantiate a driver instance, set the resource name and
various initialization values, initialize the two driver instances:

Send RF and Power Acquisition commands to the VSA driver and Apply changes to hardware,
Check the instrument queue for errors.
Perform a Channel Power Measurement,

=N -

Report errors if any occur, and close the drivers.

Example programs may be found by selecting:
C:\Program Files (x86)\Agilent\M9391\Help\Examples

AgllentTechnoIogles

Programming Guide (M9300-90080) ' 37 of 56

-1// Copy the following example code and compile it as a C# Console BApplication
// Example ChannelPowerImmediateTrigger.cs

// Channel Power Measurement, Using Immediate Trigger

ﬂbpecify using Directives

“namespace ChannelPowerImmTrigger

{
£ class Program
i
= static void Main(stringl] args)
{

// Create driver instances

IhgModularVsa VsaDriver = (IRgModularVsa) new AgM9391();
try
{
+] |Znitia;ize Driver Instances |
+] hheck Instrument Queue for Errors |
+] Receiver Settingsg
+] Pun Commands

}

catch (Exception ex)

{
Console.WriteLine ("Exceptions for the drivers:\n");
console.WriteLine (ex.Message) s

}

finally

+] h;ose Driver Znstanceﬂ

Console.WritelLine ("Done - Press Enter to Exit™);
Console.ReadLine () ;

- }

-}

-1

=] /*

Disclaimer

® 2013 Agilent Technologies Inc. Rll rights reserved.

i Agilent Technologies

Programming Guide (M9300-90080) ' 38 of 56

Pseudo-code of How to Perform Channel Power Measurement, Using Inmediate Trigger
Initialize Driver for VSA, Check for Errors

Close Driv

Send RF Settings to VSA Driver:
o Frequency
Level
Peak to Average Ratio
Conversion Mode
IF Bandwidth
o Set Acquisition Mode to “Power”

o O O O

Send Power Acquisition Setting to VSA Driver:
o Sample Rate
o Duration
o Channel Filter

Apply Method to Send Changes to Hardware
o Wait for Hardware to Settle

Send Arm Method to VSA

Send Read Power Method to VSA

er for VSA

Example Program 2: How to Perform Channel Power Measurement, Using Immediate Trigger

// Copy the following example code and compile it as a C# Console Application

// Example ChannelPowerImmediateTrigger.cs
#region Specify using Directives
using System;
using System.Collections.Generic;
using System.Ling;
using System.Text;
using Ivi.Driver.Interop;
using Agilent.AgM9391.Interop;

using

#endregion

namespace ChannelPowerImmTrigger

{

class Program

{

static void Main(stringl[] arg
{
// Create driver instance
IAgModularVsa VsaDriver =

try

{

"PXTI14::0::0::INSTR;PXI10::0::0::INSTR;PXI%::0::0::INSTR;PXI13::0::0::INSTR";

DriverSetup= Model=M9391A,

#region Initialize Driver Ins
string VSAResourceName =

bool IdQuery = true;
bool Reset = true;

string VSAOptionString =

Programming Guide (M9300-90080)

Agilent.AgModularVsa.Interop;

s)
S

(IAgModularVsa) new AgM9391();

tances

"QueryInstrStatus=true, Simulate=false,

Trace=false";

Agilent Technologies

39 of 56

VsaDriver.Initialize (VSAResourceName, IdQuery, Reset, VSAOptionString);
Console.WriteLine ("VSA Driver Initialized\n");
#endregion

#region Check Instrument Queue for Errors
// Check VSA instrument for errors
int VsaErrorNum = -1;
string VsaErrorMsg = null;
while (VsaErrorNum != 0)
{
VsaDriver.Utility.ErrorQuery(ref VsaErrorNum, ref VsaErrorMsqg);
Console.WriteLine ("VSA ErrorQuery: {0}, {1}\n", VsaErrorNum,
VsaErrorMsq) ;
}

#endregion

#region Receiver Settings

// Receiver Settings

double Frequency = 2000000000.0;

double Level = 5;

double RmsValue = 5;

double ChannelTime = 0.0001;

double MeasureBW = 5000000.0;

AgModularVsaChannelFilterShapeEnum FilterType =
AgModularVsaChannelFilterShapeEnum.AgModularVsaChannelFilterShapeRootRaisedCosine;

double FilterAlpha = 0.22;

double FilterBw = 3840000.0;

double MeasuredPower = 0;
bool Overload = true;
#endregion

#region Run Commands

// Setup the RF Path in the Receiver

VsaDriver.RF.Frequency = Frequency;

VsaDriver.RF.Power = Level;

VsaDriver.RF.Conversion =
AgModularVsaConversionkEnum.AgModularVsaConversionAuto;

VsaDriver.RF.PeakToAverage = RmsValue;

VsaDriver.RF.IFBandwidth = 40000000.0; // Use IF filter wide enough for
all adjacent channels

// Configure the Acquisition

VsaDriver.AcquisitionMode =
AgModularVsaAcquisitionModeEnum.AgModularVsaAcquisitionModePower;

VsaDriver.PowerAcquisition.Bandwidth = MeasureBW; // 5 MHz

VsaDriver.PowerAcquisition.Duration = ChannelTime; // 100 us

VsaDriver.PowerAcquisition.ChannelFilter.Configure (FilterType,
FilterAlpha, FilterBw);

// Send Changes to hardware

VsaDriver.Apply () ;

VsaDriver.WaitUntilSettled(100) ;

string response = "y";

while (string.Compare (response, "y") == 0) {
Console.WriteLine ("Press Enter to Run Test");
Console.ReadLine () ;

VsaDriver.Arm() ;

VsaDriver.PowerAcquisition.ReadPower (0O,
AgModularVsaPowerUnitsEnum.AgModularVsaPowerUnitsdBm, ref MeasuredPower, ref
Overload) ;

Console.WriteLine ("Measured Power: " + MeasuredPower + " dBm");

- Agilent Technologies
Programming Guide (M9300-90080) 40 of 56

Console.WriteLine (String.Format ("Overload = {0}", Overload ? "true"

"false"));
Console.WriteLine ("Repeat? y/n");
response = Console.ReadLine() ;
}
#endregion
}
catch (Exception ex)

{
Console.WriteLine ("Exceptions for the drivers:\n");
Console.WritelLine (ex.Message) ;

}
finally
#region Close Driver Instances

{

if (VsaDriver != null && VsaDriver.Initialized)

{
// Close the driver
VsaDriver.Close() ;
Console.WriteLine ("VSA Driver Closed\n");

}
}

#endregion

Console.WriteLine ("Done - Press Enter to Exit");
Console.ReadLine () ;

Disclaimer
© 2013 Agilent Technologies Inc. All rights reserved.

You have a royalty-free right to use, modify, reproduce and distribute this Sample Application (and/or any modified
version) in any way you find useful, provided that you agree that Agilent Technologies has no warranty, obligations or

liability for any Sample Application Files.

Agilent Technologies provides programming examples for illustration only. This sample program assumes that you are
familiar with the programming language being demonstrated and the tools used to create and debug procedures.
Agilent Technologies support engineers can help explain the functionality of Agilent Technologies software
components and associated commands, but they will not modify these samples to provide added functionality or

construct procedures to meet your specific needs.

USA Driver Initialized

USA ErrorQuery: @, No Error.

Press Enter to Run Test

Measured Power: -31.9663020076725 dBm

= false

USA Driver Closed

Done - Press Enter to Exit

Agilent Technologies

Programming Guide (M9300-90080) 41 of 56

Performing a WCDMA Power Servo and ACPR Measurement

When making a WCDMA Power Servo and ACPR measurement, Servo is performed using

"Baseband Tuning" to adjust the source amplitude and then "Baseband Tuning" is used to digitally tune the

center frequency in order to make channel power measurements, at multiple offsets, using the

Power Acquisition interface of the VSA.

Note: The M9391A PXle VSA and the M9381A PXle VSG offers two modes
for adjusting frequency and amplitude:

RF Tuning — allows the M9381A PXle VSG to be set across the complete operating frequency and
amplitude range.

Baseband Tuning — allows the frequency and amplitude to be adjusted within the IF bandwidth (160
MHz) and over a range of the output level.

Example Program 3: How to Perform a WCDMA Power Servo and ACPR Measurement

The following example code demonstrates how to instantiate two driver instances, set the resource names

and various initialization values, initialize the two driver instances:

1

2.
3.
4
5

Send RF and Modulation commands to the VSG driver and Apply changes to hardware,

Send RF and Power Acquisition commands to the VSA driver and Apply changes to hardware,
Run a Servo Loop until it is at the required output power from DUT,

Perform an ACPR Measurement for each Adjacent Channel to be measured,

Check drivers for errors and report the errors if any occur, and close the drivers.

Example programs may be found by selecting:
C:\Program Files (x86)\Agilent\M9391\Help\Examples

Agilent Technologies

Programming Guide (M9300-90080) ' 42 of 56

1// Copy the following example code and compile it as a C# Console Application
Lff Example PaServoRcpr.cs
// WCDMAE Power Servo and ACPR Measurement

ﬂbpecify using Directives

“Inamespace PaServoAcpr

{
g class Program

{
- static void Main(string[] args)
{
// Create driver instances
IRgMS38x VsgDriver = new AgMS38x();
ILhgModularVsa VsaDriver = (IRgModularVsa) new AgMS351():;
try
i
+] [fnitialize Driver Instances
+] kheck Instrument Queue for Errorﬂ
+] kreate Default Settings for WCDMA Uplink Signal
8
}
catch (Exception ex)
i
Console.WritelLine ("Exceptions for the driwvers:\n");
Console.Writeline (ex.Message);
}
finally
+] k;ose Driver :nstan:eﬂ
Console.WritelLine ("Done - Press Enter to EXit");
Console.ReadLine () ;
- }
~}
=P
Disclaimer
@ 2013 RAgilent Technologies Inc. All rights reserved.

i Agilent Technologies

Programming Guide (M9300-90080) ' 43 of 56

Pseudo-code of How to Perform a WCDMA Power Servo and ACPR Measurement
Initialize Drivers for VSG and VSA, Check for Errors

e Send RF Settings to VSG Driver:

o Frequency

o RF Level to Maximum Needed

o RFEnable On

o ALC Enable Off (for baseband power changes)
e Send Modulation Commands to VSG Driver:

o Load WCDMA Signal Studio File
Enable Modulation
Play ARB File
Set ARB Scale to 0.5
Set Baseband Power Offset to -10 dB
e Apply Method to Send Changes to Hardware

o Wait for Hardware to Settle
e Send RF Settings to VSA Driver:

o Frequency

o O O O

Level

Peak to Average Ratio
Conversion Mode

IF Bandwidth

o Set Acquisition Mode to “Power”

o O O O

e Send Power Acquisition Setting to VSA Driver:
o Sample Rate
o Duration
o Channel Filter

Apply Method to Send Changes to Hardware
o Wait for Hardware to Settle

Servo Loop:

e Set Baseband Power Offset on VSG to expected value
e Send Apply Method to VSG

e Send Arm Method to VSA

e Send ReadPower Method to VSA

o Repeat Until at Required Output Power from DUT

e Last Reading is Channel Power Measurement

ACPR Measurement:

e Set Acquisition Duration Property on VSA to Value for Adjacent Channel Measurements
e Set Frequency Offset Property on VSA to Channel Offset Frequency

e Send Apply Method to VSA

e Send Arm Method to VSA

e Send ReadPower Method to VSA

e Repeat for each Adjacent Channel to be Measured

Agilent Technologies

Programming Guide (M9300-90080) ' 44 of 56

Example Program 3: How to Perform a WCDMA Power Servo and ACPR Measurement

// Copy the following example code and compile it as a C# Console Application

// Example PaServoAcpr.cs
// WCDMA Power Servo and ACPR Measurement
#region Specify using Directives
using System;
using System.Collections.Generic;
using System.Ling;
using System.Text;
using Ivi.Driver.Interop;
using Agilent.AgM938x.Interop;
using Agilent.AgM9391.Interop;
using Agilent.AgModularVsa.Interop;
#endregion

namespace PaServoAcpr
{
class Program
{
static void Main(string[] args)
{
// Create driver instances
TAgM938x VsgDriver = new AgM938x();
IAgModularVsa VsaDriver = (IAgModularVsa) new AgM9391();
try
{
#region Initialize Driver Instances
string VsgResourceName =

"PXI8::0::0::INSTR;PXI11::0::0::INSTR;PXI12::0::0::INSTR;PXI13::0::0::INSTR";

string VsaResourceName =
"PXI14::0::0::INSTR; PXI10::0::0::INSTR;PXI9%::0::0::INSTR";

bool IdQuery = true;
bool Reset = true;
string VsgOptionString = "QueryInstrStatus=true, Simulate=false,

DriverSetup= Model=VSG, Trace=false";

string VsaOptionString = "QueryInstrStatus=true, Simulate=false,
DriverSetup= Model=VSA, Trace=false";

VsaDriver.Initialize (VsaResourceName, IdQuery, Reset, VsaOptionString);

Console.WriteLine ("VSA Driver Initialized\n");

VsgDriver.Initialize (VsgResourceName, IdQuery, Reset, VsgOptionString);

Console.WriteLine ("VSG Driver Initialized");
#endregion

#region Check Instrument Queue for Errors
// Check VSG instrument for errors

int VsgErrorNum = -1;
string VsgErrorMsg = null;
while (VsgErrorNum != 0)

{

VsgDriver.Utility.ErrorQuery (ref VsgErrorNum, ref VsgErrorMsg) ;

Console.WriteLine ("VSG ErrorQuery: {0}, {1}", VsgErrorNum,
VsgErrorMsqg) ;
}

Agilent Technologies

Programming Guide (M9300-90080)

45 of 56

// Check VSA instrument for errors

int VsaErrorNum = -1;
string VsaErrorMsg = null;
while (VsaErrorNum != 0)

{
VsaDriver.Utility.ErrorQuery (ref VsaErrorNum, ref VsaErrorMsg);
Console.WriteLine ("VSA ErrorQuery: {0}, {1}\n", VsaErrorNum,
VsaErrorMsq) ;
}

#endregion

#region Create Default Settings for WCDMA Uplink Signal
// Source Settings
double Frequency = 1000000000.0;
double Level = 3;
// If a Signal Studio waveform file is used, it may require a software

license.

string ExamplesFolder = "C:\\Program Files (x86)\\Agilent\\M938x\\Example
Waveforms\\";

string WaveformFile = "WCDMA UL DPCHH 2DPDCH 1C.wfm";

string FileName = ExamplesFolder + WaveformFile;

string ArbRef = "Mod Waveform";

// Receiver Settings

double ChannelTime = 0.0001;

double AdjacentTime = 0.0005;

double IfBandwidth = 40000000.0;

double PowerOffset = 0;

double MeasureBW = 5000000.0;

AgModularVsaChannelFilterShapeEnum FilterType =
AgModularVsaChannelFilterShapeEnum.AgModularVsaChannelFilterShapeRootRaisedCosine;

double FilterAlpha = 0.22;

double FilterBw = 3840000.0;

double[] FreqOffset = new double[] {-5000000.0, 5000000.0, -10000000.0,
10000000.0};

double MeasuredPower = 0;

bool Overload = true;

double MeasuredChannelPower;

bool ChannelPowerOverload;

double[] MeasuredACPR = new double[4];

double SampleRate = 0;

double RmsValue = 0;

double ScaleFactor =
#endregion

0;

#region Run Commands

// These commands are sent to the VSG Driver, "Apply" or "PlayArb" methods
send to hardware

VsgDriver.RF.Frequency = Frequency;

VsgDriver.RF.Level = Level;

VsgDriver.RF.OutputEnabled = true;

VsgDriver.ALC.Enabled = false;

VsgDriver.Modulation.IQ.UploadArbAgilentFile (ArbRef, FileName) ;

VsgDriver.Modulation.Enabled = true;

VsgDriver.Modulation.BasebandPower = -10;

// Play the ARB, sending all changes to hardware

VsgDriver.Modulation.PlayArb (ArbRef,
AgM938xStartEventEnum.AgM938xStartEventImmediate) ;

VsgDriver.Modulation.Scale = 0.5;

VsgDriver.Apply () ;

- Agilent Technologies
Programming Guide (M9300-90080) 46 of 56

// Get the Sample Rate and RMS Value (Peak to Average Ratio) of the
Current Waveform

AgM938xMarkerEnum RfBlankMarker = AgM938xMarkerEnum.AgM938xMarkerNone;

AgM938xMarkerEnum AlcHoldMarker AgM938xMarkerEnum.AgM938xMarkerNone;

VsgDriver.Modulation.IQ.ArbInformation (ArbRef, ref SampleRate, ref
RmsValue, ref ScaleFactor, ref RfBlankMarker, ref AlcHoldMarker);

// Setup the RF Path in the Receiver
VsaDriver.RF.Frequency = Frequency;
VsaDriver.RF.Power = Level + PowerOffset;
VsaDriver.RF.Conversion =
AgModularVsaConversionEnum.AgModularVsaConversionAuto;
VsaDriver.RF.PeakToAverage = RmsValue;
VsaDriver.RF.IFBandwidth = IfBandwidth;
// Configure the Acquisition
VsaDriver.AcquisitionMode =
AgModularVsaAcquisitionModeEnum.AgModularVsaAcquisitionModePower;
VsaDriver.PowerAcquisition.Bandwidth = MeasureBW;
VsaDriver.PowerAcquisition.Duration = ChannelTime;
VsaDriver.PowerAcquisition.ChannelFilter.Configure (FilterType,
FilterAlpha, FilterBw);
// Send Changes to hardware
VsaDriver.Apply () ;
VsaDriver.WaitUntilSettled (100) ;
string response = "y";
while (string.Compare (response, "y") == 0) {
Console.WritelLine ("Press Enter to Run Test");
Console.ReadLine () ;

// Run a group of baseband power commands to change the source level
and make a power measurement at each step.

// Simulates Servo loop timing, but does not use the measured power to

adjust the next source level
VsaDriver.PowerAcquisition.Duration = ChannelTime;
VsaDriver.Apply () ;
double[] LevelOffset = new double[] {-3, -2, -1, -0.5, -0.75};
for (int Index = 0;Index < LevelOffset.Length - 1;Index++) {
VsgDriver.Modulation.BasebandPower = LevelOffset[Index];
VsgDriver.Apply () ;
VsaDriver.Arm() ;
VsaDriver.PowerAcquisition.ReadPower (0,
AgModularVsaPowerUnitsEnum.AgModularVsaPowerUnitsdBm, ref MeasuredPower, ref
Overload) ;

}

// Loop Through the channel offset frequencies for an ACPR measurement

// Use the last value of the servo loop for the channel power
MeasuredChannelPower = MeasuredPower;

ChannelPowerOverload = Overload;
VsaDriver.PowerAcquisition.Duration = AdjacentTime;

for (int Index = 0;Index < FreqOffset.Length;Index++) {

VsaDriver.PowerAcquisition.OffsetFrequency = FreqOffset[Index];

VsaDriver.Apply () ;

VsaDriver.Arm() ;

VsaDriver.PowerAcquisition.ReadPower (0,
AgModularVsaPowerUnitsEnum.AgModularVsaPowerUnitsdBm, ref MeasuredPower, ref
Overload) ;

MeasuredACPR[Index] = MeasuredPower - MeasuredChannelPower;

Agilent Technologies

Programming Guide (M9300-90080) 47 of 56

// Make sure the VSA frequency offset is back to 0 (on repeat)

VsaDriver.PowerAcquisition.OffsetFrequency = 0;
VsaDriver.Apply () ;
if (ChannelPowerOverload == true) {

Console.WriteLine ("Channel Power Measurement Overload");
}
Console.WriteLine ("Channel Power: {0} dBm", MeasuredChannelPower) ;
Console.WriteLine ("ACPR1 L: {0} dBc", MeasuredACPR[O0]);
Console.WriteLine ("ACPR1 U: {0} dBc", MeasuredACPRI[1]);
Console.WriteLine ("ACPR2 L: {0} dBc", MeasuredACPR[2]);
Console.WriteLine ("ACPR2 U: {0} dBc", MeasuredACPRI[3]);

Console.WriteLine ("Repeat? y/n");
response = Console.ReadLine();

}

#endregion

}
catch (Exception ex)
{
Console.WriteLine ("Exceptions for the drivers:\n");
Console.WritelLine (ex.Message) ;
}
finally
#region Close Driver Instances
{
if (VsgDriver != null && VsgDriver.Initialized)
{
// Close the driver
VsgDriver.Close() ;
Console.WriteLine ("VSG Driver Closed");

if (VsaDriver != null && VsaDriver.Initialized)

{
// Close the driver

VsaDriver.Close () ;
Console.WriteLine ("VSA Driver Closed\n");

}

#endregion

Console.WriteLine ("Done - Press Enter to Exit");
Console.ReadLine () ;

Agilent Technologies

Programming Guide (M9300-90080) 48 of 56

Disclaimer
© 2013 Agilent Technologies Inc. All rights reserved.

You have a royalty-free right to use, modify, reproduce and distribute this Sample Application (and/or any modified
version) in any way you find useful, provided that you agree that Agilent Technologies has no warranty, obligations or
liability for any Sample Application Files.

Agilent Technologies provides programming examples for illustration only. This sample program assumes that you are
familiar with the programming language being demonstrated and the tools used to create and debug procedures.
Agilent Technologies support engineers can help explain the functionality of Agilent Technologies software
components and associated commands, but they will not modify these samples to provide added functionality or

construct procedures to meet your specific needs.

USA Driver Initialized

USG Driver Initialized
UEG ErrorQuery: A, No Error.
USA ErrorQuery: A, Ho Error.

Press Enter to Bun Test

Channel Power: 2.86747628576215 dBm
ACPR1 L: -68.2885836797292 dBc
ACPR1L U: -68.1435383761513 dBc
ACPRZ L: -69.8885783683514 dBc
ACPRZ U: -68.6461396479886 dBc
Repeat? v n

n
UEG Driver Closed
USA Driver Closed

Done — Press Enter to Exit

Accessing Hardware-Specific Capabilities

To access hardware-specific capabilities that are not in the common IAgModularVsa interface, you must
cast the reference to the instrument to the instrument-specific interface.

As an example, we have an M9391A PXle VSA which is referred to by an IAgModularVsa interface.
To access the specific IF output filter that is in use, we must first cast to the instrument-specific IAgM9391,
then access the hardware-specific property.

IAgModularVsa VsaDriver = new AgM9391 () ;

AgM9391IFOutputFilterEnum IFFilter =
M9

((IAgM9391)VsaDriver) .Modules.Downconverter.IFOutputFilter;

-; Agilent Technologies

Programming Guide (M9300-90080) ' 49 of 56

Appendix 1:
Routing Triggers for Four M938xA VSG
Configurations (Sharing One Reference)

The following is an example for routing triggers for four VSG configurations of modules.

// This is where we make sure the triggers that are required for the M9381A
// are routed properly across backplane segments on the chassis where necessary

// The M9018A has 3 trigger bus segments:
// Bus 1: slots 1-6

// Bus 2: slots 7-12

// Bus 3: slots 13-18

// For each M9381A in our system, there are three requirements:
// 1) PXI trigger from M9311A to M9310A for ALC. This defaults to trigger 7
// 2) PXI trigger from M9301A to M9311A for front panel External Trigger.

// This defaults to trigger 6.

// 3) None of these triggers can conflict with each other.

// For example, if there are two VSGs (or portions of a VSG)

// occupying a single chassis, they cannot both use the default trigger lines.
//

// To satisfy these requirements, we have two tools available to us:
// 1) Routing triggers between bus segments on the chassis
// 2) redefining the triggers used by the M9381A.

// For this example, we examine the routings needed for a 4 channel M9381A,

// with a single M9300A in slot 10.

// The other VSGs are in the following locations:

// VSG 1: slots 2-5

// VSG 2: slots 6-9

// VSG 3: slots 11-14

// VSG 4: slots 15-18

// We can make some observations about this configuration:

// 1) VSGl and VSG2 have conflicting backplane trigger requirements, because the
M9311A modules will be in slots

// 2 and 6, therefore in the same bus segment

// 2) VSG 2 crosses segment boundary 1-2

// 3) VSG 2 and 3 have conflicting trigger requirements, because the M9301A module
from VSG 2 and M9311A module from VSG 3 will be in slots

// 9 and 11, therefore in the same bus segment

// 4) VSG 3 crosses segment boundary 2-3

// 5) VSG 3 and 4 have conflicting trigger requirements, because the M9301A module
from VSG 3 and M9311A module from VSG 4 will be in slots

// 14 and 15, therefore in the same bus segment
// 6) VSG 1 and VSG 4 are contained entirely within one trigger bus segment.
//

// To come up with a routing, we have to address all 5 of these issues above to
satisfy the 3 requirements outlined earlier.

//

// The simplest routing turns out to be the following

// 1) VSG 1 and VSG 3 use default triggers 6 and 7

- Agilent Technologies
Programming Guide (M9300-90080) : 50 of 56

// 2) VSG 2 and VSG 4 use triggers 5 and 8

// Route triggers on chassis backplane. Note that these will persist until a
power cycle, so this section could be performed in a separate
// program that runs at startup, for example as a service
M9018.TriggerBus.Connect (0,
Agilent.AgM9018.Interop.AgM9018TrigBusEnum.AgM9018TrigBus2Tol) ;
M9018.TriggerBus.Connect (5,
Agilent.AgM9018.Interop.AgM9018TrigBusEnum.AgM9018TrigBuslTo2) ;
M9018.TriggerBus.Connect (6,
Agilent.AgM9018.Interop.AgM9018TrigBusEnum.AgM9018TrigBus3To2) ;
M9018.TriggerBus.Connect (7,
Agilent.AgM9018.Interop.AgM9018TrigBusEnum.AgM9018TrigBus2To3) ;

// Redefine triggers for VSG 2 and 4.
M9381chan2.System.PXIResources.AddHint ("M9311A", "M9310A", "ALC TRIGGER",
Agilent.AgM938x.Interop.AgM938xPXIResourceTypeEnum.AgM938xPXIResourceTypeTTL TRIGGER,
Agilent.AgM938x.Interop.AgM938xPXIResourcesEnum.AgM938xPXIResourcesTTL TRIGGER 5);
M9381chan2.System.PXIResources.AddHint ("M9301A"™, "M9311A"™, "EXTERNAL TRIGGER",
Agilent.AgM938x.Interop.AgM938xPXIResourceTypeEnum.AgMI38xPXIResourceTypeTTL TRIGGER,
Agilent.AgM938x.Interop.AgM938xPXIResourcesEnum.AgM938xPXIResourcesTTL TRIGGER O0);
M9381lchand.System.PXIResources.AddHint ("M9311A", "M9310A", "ALC TRIGGER",
Agilent.AgM938x.Interop.AgM938xPXIResourceTypeEnum.AgM938xPXIResourceTypeTTL TRIGGER,
Agilent.AgM938x.Interop.AgM938xPXIResourcesEnum.AgM938xPXIResourcesTTL TRIGGER 5);
M9381chan4.System.PXIResources.AddHint ("M9301A"™, "M9311A"™, "EXTERNAL TRIGGER",
Agilent.AgM938x.Interop.AgM938xPXIResourceTypeEnum.AgMI38xPXIResourceTypeTTL TRIGGER,
Agilent.AgM938x.Interop.AgM938xPXIResourcesEnum.AgM938xPXIResourcesTTL TRIGGER O0);

// Do other VSG things

Example programs may be found by selecting:
C:\Program Files (x86)\Agilent\M9391\Help\Examples

// Copy the following example code and compile it as a C# Console Application
using Agilent.AgM938x.Interop;

using Agilent.AgM9300.Interop;

using Agilent.AgM9018.Interop;

using System;

using System.Windows.Forms;

namespace VSG SFP
{
public partial class TriggerRouting
{
public IAgM938xEx M938lchanl;
public IAgM938xEx M938lchan2;
public IAgM938xEx M938lchan3;
public IAgM938xEx M938lchan4;
public IAgM9018 M9018; // chassis

public string M9381Chanlresource = "M9381Chanl";
public string M9381Chan2resource = "M9381Chan2";
public string M9381Chan3resource = "M9381Chan3";
public string M9381Chand4resource = "M9381Chand";
public string M9018resource = "PXI15::0::0::INSTR";

public void RouteTriggers ()

{
int errorcode = -1; string message = string.Empty;
bool idquery = true;

- Agilent Technologies
Programming Guide (M9300-90080) : 51 of 56

bool reset = true;
bool simulateHardware = false;
string M938loptions = string.Format (

Trace=false",

"QueryInstrStatus=true, Simulate={0}, M9381lSetup= Model=,

(simulateHardware ? "true" : "false"));

string M9018options = string.Format (

Trace=false",

{

M938loptions) ;

M938loptions) ;

M938loptions) ;

M938loptions) ;

"QueryInstrStatus=true, Simulate={0}, M9018Setup= Model=,

(simulateHardware ? "true" : "false"));
try

’

M9381lchanl = new AgM938x

()
M9381lchan2 = new AgM938x();
M9381chan3 = new AgM938x () ;
M9381chan4 = new AgM938x () ;

M9018 = new AgM9018();

// Initialize M9018A Chassis
M9018.Initialize (M9018resource, idquery, reset, M9018options);

//Initialize M9381 Channel 1
M9381lchanl.Initialize (M9381Chanlresource, idquery, reset,

// Clear startup messages & warnings if any.

do
{
M9381lchanl.Utility.ErrorQuery(ref errorcode, ref message);
if (errorcode != 0)
Console.WritelLine (message) ;
} while (errorcode != 0);

//Initialize M9381 Channel 2
M9381lchan2.Initialize (M9381Chan2resource, idquery, reset,

// Clear startup messages & warnings if any.

do
{
M9381lchan2.Utility.ErrorQuery(ref errorcode, ref message);
if (errorcode != 0)
Console.WritelLine (message) ;
} while (errorcode != 0);

//Initialize M9381 Channel 3
M938lchan3.Initialize (M9381Chan3resource, idquery, reset,

// Clear startup messages & warnings if any.

do
{
M9381lchan3.Utility.ErrorQuery(ref errorcode, ref message);
if (errorcode != 0)
Console.WritelLine (message) ;
} while (errorcode != 0);

//Initialize M9381 Channel 4
M9381lchan4.Initialize (M9381Chand4resource, idquery, reset,

// Clear startup messages & warnings if any.
do

Agilent Technologies

Programming Guide (M9300-90080)

52 of 56

M9381lchand4.Utility.ErrorQuery(ref errorcode, ref message);

if (errorcode != 0)
Console.WriteLine (message) ;
} while (errorcode != 0);

// This is where we do the work to make sure the triggers that are
required for the M9381A

// are routed properly across backplane segments on the chassis where
necessary

// The M9018A has 3 trigger bus segments:
// Bus 1: slots 1-6

// Bus 2: slots 7-12

// Bus 3: slots 13-18

// For each M9381A in our system, there are three requirements:

// 1) There must be a PXI trigger from M9311A to M9310A for ALC. This
defaults to trigger 7

// 2) There must be a PXI trigger from M9301A to M9311A for front
panel External Trigger. This defaults to trigger 6.

// 3) None of these triggers can conflict with each other. For
example, if there are two VSGs (or portions of a VSG)

// occupying a single chassis, they cannot both use the default
trigger lines.

// To satisfy these requirements, we have two tools available to us:
// 1) Routing triggers between bus segments on the chassis
// 2) redefining the triggers used by the M9381A.

// For this example, we examine the routings needed for a 4 channel
M9381A, with a single M9300A in slot 10.

// The other VSGs are in the following locations:

// VSG 1: slots 2-5

// VSG 2: slots 6-9

// VSG 3: slots 11-14

// VSG 4: slots 15-18

// We can make some observations about this configuration:

// 1) VSGl and VSG2 have conflicting backplane trigger requirements,
because the M9311A modules will be in slots

// 2 and 6, therefore in the same bus segment

// 2) VSG 2 crosses segment boundary 1-2

// 3) VSG 2 and 3 have conflicting trigger requirements, because the
M9301A module from VSG 2 and M9311A module from VSG 3 will be in slots

// 9 and 11, therefore in the same bus segment

// 4) VSG 3 crosses segment boundary 2-3

// 5) VSG 3 and 4 have conflicting trigger requirements, because the
M9301A module from VSG 3 and M9311A module from VSG 4 will be in slots

// 14 and 15, therefore in the same bus segment

// 6) VSG 1 and VSG 4 are contained entirely within one trigger bus
segment.

//

// To come up with a routing, we have to address all 5 of these issues
above to satisfy the 3 requirements outlined earlier.

//

// The simplest routing turns out to be the following

// 1) VSG 1 and VSG 3 use default triggers 6 and 7

// 2) VSG 2 and VSG 4 use triggers 5 and 8

// Route triggers on chassis backplane. Note that these will persist
until a power cycle, so this section could be performed in a separate
e

Agilent Technologies

o

Programming Guide (M9300-90080) ' 53 of 56

Agilent.AgM9018.
Agilent.AgM9018.
Agilent.AgM9018.

Agilent.AgM9018.

TRIGGER",
Agilent.AgM938x.
Agilent.AgM938x.

TRIGGER",
Agilent.AgM938x.
Agilent.AgM938x.

TRIGGER",
Agilent.AgM938x.
Agilent.AgM938x.

TRIGGER",

Agilent.AgM938x.
Agilent.AgM938x.

}

catch

{
}

Disclaimer

// program that runs at startup,
M9018.TriggerBus.Connect (0,
Interop.AgM9018TrigBusEnum.AgM9018TrigBus2Tol) ;
M9018.TriggerBus.Connect (5,
Interop.AgM9018TrigBusEnum.AgM9018TrigBuslTo?2) ;
M9018.TriggerBus.Connect (6,
Interop.AgM9018TrigBusEnum.AgM9018TrigBus3To2) ;
M9018.TriggerBus.Connect (7,
Interop.AgM9018TrigBusEnum.AgM9018TrigBus2To3) ;

for example as a service

// Redefine triggers for VSG 2 and 4.

M9381lchan2.System.PXIResources.AddHint ("M9311A"™, "M9310A", "ALC
Interop.AgM938xPXIResourceTypeEnum.AgM938xPXIResourceTypeTTL TRIGGER,
Interop.AgM938xPXIResourceskEnum.AgM938xPXIResourcesTTL TRIGGER 5);

M9381lchan2.System.PXIResources.AddHint ("M9301A", "M9311A", "EXTERNAL
Interop.AgM938xPXIResourceTypeEnum.AgM938xPXIResourceTypeTTL TRIGGER,
Interop.AgM938xPXIResourceskEnum.AgM938xPXIResourcesTTL TRIGGER 0);
M9381lchand.System.PXIResources.AddHint ("M9311A", "M9310A", "ALC
Interop.AgM938xPXIResourceTypeEnum.AgM938xPXIResourceTypeTTL TRIGGER,
Interop.AgM938xPXIResourcesEnum.AgM938xPXIResourcesTTL TRIGGER 5);
M9381lchand.System.PXIResources.AddHint ("M9301A", "M9311A", "EXTERNAL

Interop.AgM938xPXIResourceTypeEnum.AgM938xPXIResourceTypeTTL TRIGGER,
Interop.AgM938xPXIResourcesEnum.AgM938xPXIResourcesTTL TRIGGER O0);

// Do other VSG things
(Exception ex)

MessageBox.Show (ex.Message) ;

© 2013 Agilent Technologies Inc. All rights reserved.

You have a royalty-free right to use, modify, reproduce and distribute this Sample Application (and/or any modified

version) in any way you find useful, provided that you agree that Agilent Technologies has no warranty, obligations or

liability for any Sample Application Files.

Agilent Technologies provides programming examples for illustration only. This sample program assumes that you are

familiar with the programming language being demonstrated and the tools used to create and debug procedures.

Agilent Technologies support engineers can help explain the functionality of Agilent Technologies software

components and associated commands, but they will not modify these samples to provide added functionality or

construct procedures to meet your specific needs.

Programming Guide (M9300-90080)

Agilent Technologies

54 of 56

Glossary

ADE (application development environment) — An integrated suite of software development programs.
ADEs may include a text editor, compiler, and debugger, as well as other tools used in creating,
maintaining, and debugging application programs. Example: Microsoft Visual Studio.

API (application programming interface) — An API is a well-defined set of set of software routines
through which application program can access the functions and services provided by an underlying
operating system or library. Example: VI Drivers

C# (pronounced “C sharp”) — C-like, component-oriented language that eliminates much of the
difficulty associated with C/C++.

Direct I/0 — commands sent directly to an instrument, without the benefit of, or interference from a
driver. SCPI Example: SENSe:VOLTage:RANGe:AUTO Driver (or device driver) — a collection of
functions resident on a computer and used to control a peripheral device.

DLL (dynamic link library) — An executable program or data file bound to an application program and
loaded only when needed, thereby reducing memory requirements. The functions or data in a DLL can
be simultaneously shared by several applications.

Input/Qutput (1/0) layer — The software that collects data from and issues commands to peripheral
devices. The VISA function library is an example of an 1/0 layer that allows application programs and
drivers to access peripheral instrumentation.

IVI (Interchangeable Virtual Instruments) — a standard instrument driver model defined by the VI
Foundation that enables engineers to exchange instruments made by different manufacturers without
rewriting their code. www.ivifoundation.org

IVI COM drivers (also known as IVI Component drivers) — IVI COM presents the IVI driver as a COM
object in Visual Basic. You get all the intelligence and all the benefits of the development environment
because IVI COM does things in a smart way and presents an easier, more consistent way to send
commands to an instrument. It is similar across multiple instruments.

Microsoft COM (Component Object Model) — The concept of software components is analogous to
that of hardware components: as long as components present the same interface and perform the same
functions, they are interchangeable. Software components are the natural extension of DLLs. Microsoft
developed the COM standard to allow software manufacturers to create new software components that
can be used with an existing application program, without requiring that the application be rebuilt. It is
this capability that allows T&M instruments and their COM-based 1VI-Component drivers to be
interchanged.

.NET Framework — The .NET Framework is an object-oriented API that simplifies application
development in a Windows environment. The .NET Framework has two main components: the common
language runtime and the .NET Framework class library.

~<,2 Agilent Technologies

Programming Guide (M9300-90080) ' 55 of 56

http://www.ivifoundation.org/

VISA (Virtual Instrument Software Architecture) — The VISA standard was created by the VXIplug&play
Foundation. Drivers that conform to the VXIplug&play standards always perform /0 through the VISA
library. Therefore if you are using Plug and Play drivers, you will need the VISA 1/0 library. The VISA
standard was intended to provide a common set of function calls that are similar across physical
interfaces. In practice, VISA libraries tend to be specific to the vendor’s interface.

VISA-COM — The VISA-COM library is a COM interface for 1/0 that was developed as a companion to
the VISA specification. VISA-COM 1/0 provides the services of VISA in a COM-based API. VISA-COM
includes some higher-level services that are not available in VISA, but in terms of low-level I/0
communication capabilities, VISA-COM is a subset of VISA. Agilent VISA-COM is used by its IVI-
Component drivers and requires that Agilent VISA also be installed.

References

1. Understanding Drivers and Direct |/0, Application Note 1465-3 (Agilent Part Number: 5989-0110EN)

2. Digital Baseband Tuning Technique Speeds Up Testing, by Bill Anklam, Victor Grothen and Doug Olney,
Agilent Technologies, Santa Clara, CA, April 15, 2013, Microwave Journal

3. www.ivifoundation.org

Agilent Technologies

Programming Guide (M9300-90080) . 56 of 56

http://www.ivifoundation.org/

The Modular Tangram

The four-sided geometric symbol that appears in Agilent modular
product literature is called a tangram. The goal of this seven-piece
puzzle is to create shapes—from simple to complex. As with a
tangram, the possibilities may seem infinite as you begin to create
a new test system. With a set of clearly defined elements—
hardware, software—Agilent can help you create the system you
need, from simple to complex.

DISCOVER the Alternatives ...
... Agilent MODULAR Products

Agilent Advantage Services is committed to your
success throughout your equipment’s lifetime.
www.agilent.com/find/advantageservices

Agilent Channel Partners provide sales and solutions
support. For details, see

Agilent Email Updates keep you informed on the
latest product, support and application information.
www.agilent.com/find/channelpartners
KEM Ified 1S09001:2008 certified. For details, see
MMLZMQSQ‘Q www.agilent.com/ quality

www.agilent.com/find/emailupdates
[NV 4

FPAL wwwxisa.org

PICMG and the PICMG logo, CompactPCl and the CompactPCl logo,
AdvancedTCA and the AdvancedTCA logo are US registered trademarks of the
PCl Industrial Computers Manufacturers Group. “PCle” and “PCI EXPRESS” are
registered trademarks and/or service marks of PC-SIG. Microsoft, Windows,
Visual Studio, Visual C++, Visual C#, and Visual Basic are either registered
trademark or trademarks of Microsoft Corporation.

Product descriptions in this document are subject to change without notice.

© Agilent Technologies, Inc. 2013

.' Agilent Technologies

www.agilent.com
www.agilent.com/find/modular
www.agilent.com/find/pxi-vsag

For more information on Agilent Technologies' products,

applications or services, please contact your local Agilent office.
(For additional listings, go to www.agilent.com/find/assist.)

Americas

Canada (877) 894 4414
Brazil (11) 4197 3500
Mexico 018005064 800
United States (800) 829 4444
Asia Pacific

Australia 1800629 485

China 8008100189

Hong Kong 800938 693

India 1800112929
Japan 0120 (421) 345
Korea 080769 0800
Malaysia 1800888 848
Singapore 18003758100
Taiwan 0800 047 866
Thailand 1800226 008
Europe & Middle East

Austria 43(0) 1360277 1571
Belgium 32(0)24049340
Denmark 4570131515
Finland 358 (0) 10 8552100
France 0825010700 (0.125 €/minute)
Germany 49 (0) 7031 464 6333
Ireland 1890924 204

Israel 97239288504 /544
Italy 390292608484
Netherlands 31(0)20547 2111
Spain 34(91) 631 3300
Sweden 0200 88 22 55
Switzerland 0800805353

United Kingdom 44.(0) 1189276201

www.agilent.com/find/pxi-vsag

	M9391A PXIe Vector Signal Analyzer and M9381A PXIe Vector Signal Generator Programming Guide
	What You Will Learn in this Programming Guide
	Related Websites
	Related Documentation
	Understanding the Overall Process Flow

	Before Programming, Install Hardware, Software, and Software Licenses
	Understanding the Application Programming Interfaces (API)for the AgModularVsa, M9391A PXIe VSA, and M938xA PXIe VSG
	IVI Instrument Classes (Defined by the IVI Foundation)
	IVI Compliant or IVI Class Compliant
	IVI Driver Types
	IVI Driver Hierarchy
	Instrument-Specific Hierarchies for the AgModularVsa, M9391A, and M938xA

	Naming Conventions Used to Program IVI Drivers
	General IVI Naming Conventions
	IVI-COM Naming Conventions

	Tutorial: Create a Project with IVI-COM Using C#
	Example Program 1: How to Print Driver Properties, Check for Errors, and Close Driver Sessions
	Disclaimer
	Alternate Example Program 1: How to Print Driver Properties, Check for Errors, and Close Driver Sessions
	Disclaimer
	Disclaimer

	Step 1 – Create a “Console Application”
	Step 2 – Add References
	Step 3 – Add using Statements
	To access the IVI drivers without having to specify or type the full path of each interface or enum

	Step 4 – Create Instances of the IVI-COM Drivers
	To create driver instances

	Step 5 – Initialize the Driver Instances
	To determine the VsaResourceName and VsgResourceName
	Set the Initialize()Parameters
	Call the Initialize() Method with the Set Parameters
	Understanding Initialize Options
	Understanding M9300A Reference Sharing
	Example: M9300A PXIe Reference as Part of the M9381A PXIe VSG Configuration of Modules
	Example: M9300A PXIe Reference as Part of the M9391A PXIe VSA Configuration of Modules
	Example: M9300A PXIe Reference as Part of the Both Configurations of Modules

	Step 6 – Write the Program Steps
	Example: Using the Soft Front Panel to Write Program Commands

	Step 7 – Close the Driver
	Building and Running a Complete Example Program Using Visual C#
	Example Programs
	Example Program 1: How to Print Driver Properties, Check for Errors, and Close Driver Sessions

	Understanding PA / FEM Measurements
	Test Challenges Faced by Power Amplifier Testing
	Performing a Channel Power Measurement, Using Immediate Trigger
	Example Program 2: How to Perform Channel Power Measurement, Using Immediate Trigger (Settings for WCDMA Signal)
	Pseudo-code of How to Perform Channel Power Measurement, Using Immediate Trigger
	Example Program 2: How to Perform Channel Power Measurement, Using Immediate Trigger

	Disclaimer

	Performing a WCDMA Power Servo and ACPR Measurement
	Example Program 3: How to Perform a WCDMA Power Servo and ACPR Measurement
	Pseudo-code of How to Perform a WCDMA Power Servo and ACPR Measurement
	Example Program 3: How to Perform a WCDMA Power Servo and ACPR Measurement

	Accessing Hardware-Specific Capabilities
	Disclaimer

	Glossary
	References

	Blank Page

