

Agilent
M9391A PXIe Vector Signal
Analyzer and M9381A PXIe
Vector Signal Generator

 Programming Guide

for Creating IVI-COM
Console Applications

 June 24, 2013

Part Number: M9300-90080

© Agilent Technologies, Inc. 2013

Contents
What You Will Learn in this Programming Guide ... 4

Related Websites ... 5

Related Documentation ... 5

Understanding the Overall Process Flow ... 7

Before Programming, Install Hardware, Software, and Software Licenses ... 7

Understanding the Application Programming Interfaces (API) for the AgModularVsa, M9391A PXIe VSA, and
M938xA PXIe VSG .. 8

IVI Instrument Classes (Defined by the IVI Foundation) ... 8

IVI Compliant or IVI Class Compliant .. 9

IVI Driver Types... 9

IVI Driver Hierarchy .. 10

Instrument-Specific Hierarchies for the AgModularVsa, M9391A, and M938xA ... 12

Naming Conventions Used to Program IVI Drivers ... 14

General IVI Naming Conventions .. 14

IVI-COM Naming Conventions ... 14

Tutorial: Create a Project with IVI-COM Using C# ... 15

Step 1 – Create a “Console Application” ... 15

Step 2 – Add References .. 16

Step 3 – Add using Statements ... 17

To access the IVI drivers without having to specify or type the full path of each interface or enum 17

Step 4 – Create Instances of the IVI-COM Drivers ... 18

To create driver instances .. 18

Step 5 – Initialize the Driver Instances ... 19

To determine the VsaResourceName and VsgResourceName ... 19

Set the Initialize()Parameters ... 20

Programming Guide (M9300-90080) 2 of 56

Call the Initialize() Method with the Set Parameters ... 21

Understanding Initialize Options ... 22

Understanding M9300A Reference Sharing .. 24

Step 6 – Write the Program Steps... 26

Example: Using the Soft Front Panel to Write Program Commands ... 26

Step 7 – Close the Driver .. 27

Building and Running a Complete Example Program Using Visual C# ... 27

Example Programs .. 28

Example Program 1: How to Print Driver Properties, Check for Errors, and Close Driver Sessions 28

Understanding PA / FEM Measurements .. 35

Test Challenges Faced by Power Amplifier Testing ... 36

Performing a Channel Power Measurement, Using Immediate Trigger ... 37

Example Program 2: How to Perform Channel Power Measurement, Using Immediate Trigger (Settings
for WCDMA Signal) ... 37

Performing a WCDMA Power Servo and ACPR Measurement .. 42

Example Program 3: How to Perform a WCDMA Power Servo and ACPR Measurement 42

Accessing Hardware-Specific Capabilities ... 49

Glossary .. 55

References ... 56

Programming Guide (M9300-90080) 3 of 56

What You Will Learn in this Programming Guide
This programming guide is intended for individuals who write and run programs to control test-and-
measurement instruments. Specifically, in this programming guide, you will learn how to use
Visual Studio 2008 with the .NET Framework to write IVI-COM Console Applications in Visual C#.
Knowledge of Visual Studio 2008 with the .NET Framework and knowledge of the programming syntax for
Visual C# is required.

Our basic user programming model uses the IVI-COM driver directly and allows customer code to:

• access the IVI-COM driver at the lowest level
• access IQ Acquisition Mode, Power Acquisition Mode, and Spectrum Acquisition Mode
• control the Agilent M9391A PXIe Vector Signal Analyzer (VSA) and

Agilent M9381A PXIe Vector Signal Generator (VSG) while performing
Power Amplifier (PA) / Front End Module (FEM) Production Tests

• generate waveforms created by Signal Studio software (licenses are required)

IVI-COM Console Applications that are covered in this programming guide are
used to perform acquisition measurements with the AgModularVsa or
M9391A PXIe VSA from signals that are created with the M9381A PXIe VSG.

The following PA / FEM Power Measurement Production Tests are covered:

• Example Program 1: How to Print Driver Properties, Check for Errors, and Close Driver Sessions
• Example Program 2: How to Perform a Channel Power Measurement, Using Immediate Trigger
• Example Program 3: How to Perform a WCDMA Power Servo and ACPR Measurement

Programming Guide (M9300-90080) 4 of 56

Related Websites

• Agilent Technologies PXI and AXIe Modular Products
o M9391A PXIe Vector Signal Analyzer
o M9381A PXIe Vector Signal Generator

• Agilent Technologies
o IVI Drivers & Components Downloads
o Agilent I/O Libraries Suite
o GPIB, USB, & Instrument Control Products
o Agilent VEE Pro
o Technical Support, Manuals, & Downloads
o Contact Agilent Test & Measurement

• IVI Foundation - Usage Guides, Specifications, Shared Components Downloads
• MSDN Online

Related Documentation
To access documentation related to the IVI Driver, use one of the following:

Document Link
Startup Guide*
Includes procedures to help you to unpack, inspect, install (software and
hardware), perform instrument connections, verify operability, and troubleshoot
your product. Also includes an annotated block diagram.

M9391A

M9381A

Data Sheet*
In addition to a detailed product introduction, the data sheet supplies full product
specifications.

M9391A

M9381A

LabVIEW Driver Reference (Online Help System)
Provides detailed documentation of the LabVIEW G Driver API functions.

M9391A

M9381A
* If these links do not work, you can find these items at:
 Start > All Programs > Agilent > M938x
 Start > All Programs > Agilent > M9391A

Programming Guide (M9300-90080) 5 of 56

http://www.agilent.com/find/Modular
http://www.agilent.com/find/M9391A
http://www.agilent.com/find/M9381A
http://www.agilent.com/
http://www.agilent.com/find/ivi
http://www.agilent.com/find/iosuite
http://www.agilent.com/find/io
http://www.agilent.com/find/vee
http://www.agilent.com/find/support
http://www.agilent.com/find/contactus
http://www.ivifoundation.org/
http://msdn.microsoft.com/

Programming Guide (M9300-90080) 6 of 56

Understanding the Overall Process Flow
• Write source code using Microsoft Visual Studio 2008 with .NET Visual C# running on Windows 7.
• Compile Source Code using the .NET Framework Library.
• Produce an Assembly.exe file – this file can run directly from Microsoft Windows without the need

for any other programs. When using the Visual Studio Integrated Development Environment (IDE),
the Console Applications you write are stored in conceptual containers called Solutions and
Projects. You can view and access Solutions and Projects using the Solution Explorer window
(View > Solution Explorer).

Before Programming, Install Hardware, Software, and Software Licenses
Step 1. Install Microsoft Visual Studio 2008 with .NET Visual C# running on Windows 7.

You can also use a free version of Visual Studio Express 2010 tools from:
http://www.microsoft.com/visualstudio/eng/products/visual-studio-2010-express

The following steps, defined in the Agilent M9391A PXIe VSA and M9381A PXIe VSG
Startup Guide, M9300-90090, but repeated here must be completed before programmatically
controlling the M9391A PXIe VSA and M9381A PXIe VSG hardware with these IVI drivers.

Step 2. Unpack and inspect all hardware.
Step 3. Verify the shipment contents.
Step 4. Install the software. Note the following order when installing software!
 (If you run the installation .exe, all of these are installed automatically.)

• Install Agilent IO Libraries Suite (IOLS), Version 16.3.16603.3 or newer; this installation includes
Agilent Connections Expert.

• (Optional) Install Agilent 89600 Vector Signal Analyzer Software, Version 15 or newer.
• Install the M938xA PXIe VSG driver software, Version 1.2.525.1 or newer.
• Install the M9391A PXIe VSA driver software, includes AgModularVsa, Version 1.0.0.0 or newer

Driver software includes all IVI-COM, IVI-C, and LabVIEW G Drivers along with
Soft Front Panel (SFP) programs and documentation.

All of these items may be downloaded from the Agilent product websites:

o http://www.agilent.com/find/iosuite
o http://www.agilent.com/find/ivi - download installers for Agilent IVI-COM drivers
o http://www.agilent.com/find/m9391a > Select Technical Support > Select the Drivers,

Firmware & Software tab > Download the Instrument Driver.
o http://www.agilent.com/find/m9381a > Select Technical Support > Select the Drivers,

Firmware & Software tab > Download the Instrument Driver.

Programming Guide (M9300-90080) 7 of 56

http://www.microsoft.com/visualstudio/eng/products/visual-studio-2010-express
http://www.agilent.com/find/iosuite
http://www.agilent.com/find/ivi
http://www.agilent.com/find/m9391a
http://www.agilent.com/find/m9381a

Step 5. Install the hardware modules and make cable connections.

Step 6. Verify operation of the modules (or the system that the modules create).

Note: Before programming or making measurements, conduct a Self-Test on both the
M9391A PXIe VSA and M9381A PXIe VSG to make sure there are no problems with the modules,
cabling, or backplane trigger mapping.

Once the software and hardware are installed and verification of operation has been performed, they are
ready to be programmatically controlled.

Understanding the Application Programming Interfaces (API)
for the AgModularVsa, M9391A PXIe VSA, and M938xA PXIe VSG
The following IVI driver terminology may be used throughout this programming guide.

IVI [Interchangeable Virtual Instruments] — a standard instrument driver model defined by the
IVI Foundation that enables engineers to exchange instruments made by different manufacturers
without rewriting their code. www.ivifoundation.org

Currently, there are 13 IVI Instrument Classes defined by the IVI Foundation. The AgModularVsa, the
M9391A PXIe VSA, and the M9381A PXIe VSG do not belong to any of these 13 IVI Instrument Classes and
are therefore describes as “NoClass” modules.

IVI Instrument Classes (Defined by the IVI Foundation)
• DC Power Supply
• AC Power Supply
• DMM
• Function Generator
• Oscilloscope
• Power Meter
• RF Signal Generator
• Spectrum Analyzer
• Switch
• Upconverter
• Downconverter
• Digitizer
• Counter/Timer

Programming Guide (M9300-90080) 8 of 56

http://www.ivifoundation.org/

IVI Compliant or IVI Class Compliant
AgModularVsa, M9391A PXIe VSA, and M9381A PXIe VSG are IVI Compliant, but not IVI Class Compliant;
they each do not belong to one of the 13 IVI Instrument Classes defined by the IVI Foundation.

• IVI Compliant – means that the IVI driver follows architectural specifications for these categories:
o Installation
o Inherent Capabilities
o Cross Class Capabilities
o Style
o Custom Instrument API

• IVI Class Compliant – means that the IVI driver implements one of the 13 IVI Instrument Classes
o If an instrument is IVI Class Compliant, it is also IVI Compliant
o Provides one of the 13 IVI Instrument Class APIs in addition to a Custom API
o Custom API may be omitted (unusual)
o Simplifies exchanging instruments

IVI Driver Types

• IVI Driver
o Implements the Inherent Capabilities Specification
o Complies with all of the architecture specifications
o May or may not comply with one of the 13 IVI Instrument Classes
o Is either an IVI Specific Driver or an IVI Class Driver

Programming Guide (M9300-90080) 9 of 56

• IVI Specific Driver
o Is an IVI Driver that is written for a particular instrument such as the M9391A PXIe VSA or

M938xA PXIe VSG
• IVI Class Driver

o Is an IVI Driver needed only for interchangeability in IVI-C environments
o The IVI Class may be IVI-defined or customer-defined

• IVI Class-Compliant Specific Driver
o IVI Specific Driver that complies with one (or more) of the IVI defined class specifications
o Used when hardware independence is desired

• IVI Custom Specific Driver
o IVI Specific Driver that is not compliant with any one of the IVI defined class specifications
o Not interchangeable
o Agilent has created a common Vector Signal Analyzer (VSA) interface (IAgModularVsa)

that provides commonality between the M9391A PXIe VSA and future Agilent modular
vector signal analyzers. This common modular VSA class will make the VSA’s interface-
compatible, which makes transitioning software between them extremely easy. Any
instrument-specific capability can still be accessed via the instrument-specific interface
(i.e. IAgM9391).
 IAgModularVsa is the root interface and contains references to child interfaces,

which in turn contain references to other child interfaces. Collectively, these
interfaces define the instrument-specific hierarchy for the IAgModularVsa.

IVI Driver Hierarchy
When writing programs, you will be using the interfaces (APIs) available to the IVI-COM driver.

• The core of every IVI-COM driver is a single object with many interfaces.
• These interfaces are organized into two hierarchies: Class-Compliant Hierarchy and

Instrument-Specific Hierarchy – and both include the IIviDriver interfaces.
o Class-Compliant Hierarchy - Since the AgModularVsa, M9391A PXIe VSA, and

M9381A PXIe VSG do not belong to one of the 13 IVI Classes, there is no
Class-Compliant Hierarchy in their IVI Driver.

o Instrument-Specific Hierarchy
 The AgModularVsa has a Common Vector Signal Analyzer (VSA) interface

(IAgModularVsa) and provides commonality between the M9391A PXIe VSA and
future Agilent modular vector signal analyzers. This common modular VSA class
will make the VSAs interface-compatible, which makes transitioning software
between them extremely easy. Any instrument-specific capability can still be

Programming Guide (M9300-90080) 10 of 56

accessed via the instrument-specific interface (i.e. IAgM9391).
• IAgModularVsa is the root interface and contains references to child

interfaces, which in turn contain references to other child interfaces.
Collectively, these interfaces define the instrument-specific hierarchy.

 The M9391A PXIe VSA’s instrument-specific hierarchy has IAgM9391 at the root
(where AgM9391 is the driver name).

• IAgM9391 is the root interface and contains references to child interfaces,
which in turn contain references to other child interfaces. Collectively,
these interfaces define the instrument-specific hierarchy.

 The M938xA PXIe VSG’s instrument-specific hierarchy has IAgM938x at the root
(where AgM938x is the driver name).

• IAgM938x is the root interface and contains references to child interfaces,
which in turn contain references to other child interfaces. Collectively,
these interfaces define the instrument-specific hierarchy.

o The IIviDriver interfaces are incorporated into both hierarchies: Class-Compliant Hierarchy
and Instrument-Specific Hierarchy.

The IIviDriver is the root interface for IVI Inherent Capabilities which are what the
IVI Foundation has established as a set of functions and attributes that all IVI drivers must
include -- irrespective of which IVI instrument class the driver supports. These common
functions and attributes are called IVI inherent capabilities and they are documented in
IVI-3.2 -- Inherent Capabilities Specification. Drivers that do not support any IVI instrument
class such as the M9391A PXIe VSA or M938xA PXIe VSG must still include these
IVI inherent capabilities.

IIviDriver
Close
DriverOperation
Identity
Initialize
Initialized
Utility

Programming Guide (M9300-90080) 11 of 56

Instrument-Specific Hierarchies for the AgModularVsa, M9391A, and M938xA
The following table lists the instrument-specific hierarchy interfaces for the:
AgModularVsa, M9391A PXIe VSA, and M938xA PXIe VSG.

Agilent AgModularVsa
Instrument-Specific Hierarchy

Agilent M9391A PXIe VSA
Instrument-Specific Hierarchy

Agilent M938xA PXIe VSG
Instrument-Specific Hierarchy

 AgM9391 is the driver name AgM938x is the driver name
IAgModularVsa is the
root interface

IAgM9391 is the root interface IAgM938x is the root interface

Programming Guide (M9300-90080) 12 of 56

Note:

To view interfaces available in the IAgModularVsa interface, right-click the AgModularVsaLib library file, in
the References folder, from the Solution Explorer window and select View in Object Browser.

To view the interfaces available in the M9381A PXIe VSG, right-click the AgM938xLib library file, in the
References folder, from the Solution Explorer window and select View in Object Browser.

To view interfaces available in the M9391A PXIe VSAG, right-click the AgM9391Lib library file, in the
References folder, from the Solution Explorer window and select View in Object Browser.

Programming Guide (M9300-90080) 13 of 56

Naming Conventions Used to Program IVI Drivers

General IVI Naming Conventions
• All instrument class names start with “Ivi”

o Example: IviScope, IviDmm
• Function names

o One or more words use PascalCasing
o First word should be a verb

IVI-COM Naming Conventions
• Interface naming

o Class compliant: Starts with “IIvi”
o I<ClassName>

• Example: IIviScope, IIviDmm
o Sub-interfaces add words to the base name that match the C hierarchy as close as possible

• Examples: IIviFgenArbitrary, IIviFgenArbitraryWaveform
• Defined values

o Enumerations and enum values are used to represent discrete values in IVI-COM
o <ClassName><descriptive words>Enum

• Example: IviScopeTriggerCouplingEnum
o Enum values don’t end in “Enum” but use the last word to differentiate

Examples: IviScopeTriggerCouplingAC and IviScopeTriggerCouplingDC

Programming Guide (M9300-90080) 14 of 56

Tutorial: Create a Project with IVI-COM Using C#
This tutorial will walk through the various steps required to create a console application using Visual Studio
and C#. It demonstrates how to instantiate two driver instances, set the resource names and various
initialization values, initialize the two driver instances, print various driver properties to a console for each
driver instance, check drivers for errors and report the errors if any occur, and close both drivers.

Step 1. - Create a "Console Application"
Step 2. - Add References
Step 3. - Add using Statements
Step 4. - Create an Instance
Step 5. - Initialize the Instance
Step 6. - Write the Program Steps (Create a Signal or Perform a Measurement)
Step 7. - Close the Instance

At the end of this tutorial is a complete example program that shows what the console application looks like
if you follow all of these steps.

Step 1 – Create a “Console Application”
Note: Projects that use a Console Application do not show a Graphical User Interface (GUI) display.

1. Launch Visual Studio and create a new Console Application in Visual C# by selecting:
File > New > Project and select a Visual C# Console Application.

Enter “VsaVsgProperties” as the Name of the project and click OK.

Note: When you select New, Visual Studio will create an empty Program.cs file that includes some
necessary code, including using statements. This code is required, so do not delete it.

2. Select Project and click Add Reference. The Add Reference dialog appears.
For this step, Solution Explorer must be visible (View > Solution Explorer) and the "Program.cs"
editor window must be visible – select the Program.cs tab to bring it to the front view.

Programming Guide (M9300-90080) 15 of 56

Step 2 – Add References
In order to access the AgModularVsa, M9391A PXIe VSA, and M9381A PXIe VSG driver interfaces,
references to their drivers (DLL) must be created.

1. In Solution Explorer, right-click on References and select Add Reference.

2. From the Add Reference dialog, select the COM tab.

3. Click on any of the type libraries under the “Component Name” heading and enter the letter “I”.
(All IVI drivers begin with IVI so this will move down the list of type libraries that begin with “I”.)

Note: If you have not installed the IVI driver for the AgModularVsa, M9391A PXIe VSA, and M9381A
PXIe VSG products (as listed in the previous section titled “Before Programming, Install Hardware,
Software, and Software Licenses”), their IVI drivers will not appear in this list.

Also, the TypeLib Version that appears will depend on the version of the IVI driver that is installed.
The version numbers change over time and typically increase as new drivers are released.

To get the IVI drivers to appear in this list, you must close this Add Reference dialog, install the
IVI drivers, and come back to this section and repeat “Step 2 – Add References”.

4. Scroll to the IVI section and, using Shift-Ctrl, select the following type libraries then select OK.

IVI AgM938x 1.2 Type Library
IVI AgM9391 1.0 Type Library
IVI AgModularVsa 1.0 Type Library

Note: When any of the references for the AgModularVsa, AgM9391A, or AgM938x are added,
the IVIDriver 1.0 Type Libary is also automatically added. This is visible as
IviDriverLib under the project Reference; this reference houses the interface definitions for
IVI inherent capabilities which are located in the file IviDriverTypeLib.dll (dynamically linked library).

Programming Guide (M9300-90080) 16 of 56

5. These selected type libraries appear under the References node, in Solution Explorer, as:

Note: Your program looks the same as it did before you added the References, but the difference is
that the IVI drivers that you added References to are now available for use. To allow your program
to access the IVI drivers without specifying full path names of each interface or enum, you need to
add using statements to your program.

Step 3 – Add using Statements
All data types (interfaces and enums) are contained within namespaces. (A namespace is a hierarchical
naming scheme for grouping types into logical categories of related functionality. Design tools, such as
Visual Studio, can use namespaces which makes it easier to browse and reference types in your code.)
The C# using statement allows the type name to be used directly. Without the using statement, the
complete namespace-qualified name must be used. To allow your program to access the IVI driver without
having to type the full path of each interface or enum, type the following using statements immediately
below the other using statements; the following example illustrates how to add using statements.

To access the IVI drivers without having to specify or type the full path of each interface or enum
These using statements should be added to your program:
using Ivi.Driver.Interop;
using Agilent.AgM938x.Interop;
using Agilent.AgM9391.Interop;
using Agilent.AgModularVsa.Interop;

Note: You can create sections of code in your program that can be expanded and collapsed by
surrounding the code with #region and #endregion keywords. Selecting the – and + symbols
allows the region to be collapsed and expanded.

Collasped

and

Expanded

Programming Guide (M9300-90080) 17 of 56

Step 4 – Create Instances of the IVI-COM Drivers
There are two ways to instantiate (create an instance of) the IVI-COM drivers:

o Direct Instantiation
o COM Session Factory

Since the M9391A PXIe VSA and M9381A PXIe VSG are both considered NoClass modules
(because they do not belong to one of the 13 IVI Classes), the COM Session Factory is not used to create
instances of their IVI-COM drivers. So, the M9391A PXIe VSA and M938xA PXIe VSG IVI-COM drivers use
direct instantiation. Because direct instantiation is used, their IVI-COM drivers may not be interchangeable
with other VSA and VSG modules.

Agilent has created a common Vector Signal Analyzer (VSA) interface (IAgModularVsa) that provides
commonality between the M9391A PXIe VSA and future Agilent modular vector signal analyzers. This
common modular VSA class will make the VSA's interface-compatible, which makes transitioning software
between them extremely easy. Any instrument-specific capability can still be accessed via the instrument-
specific interface (i.e. IAgM9391). So, when creating a driver instance for a VSA, either the IAgModularVsa
interface or the IAgM9391 interface can be used.

To create driver instances
The new operator is used in C# to create an instance of the driver.

IAgModularVsa VsaDriver = (IAgModularVsa) new AgM9391();
IAgM938x VsgDriver = new AgM938x();

…or when using a specific VSA interface such as the IAgM9391:

IAgM9391 VsaDriver = new AgM9391();
IAgM938x VsgDriver = new AgM938x();

Programming Guide (M9300-90080) 18 of 56

Step 5 – Initialize the Driver Instances
Initialize() is required when using any IVI driver; it establishes a communication link (an
"I/O session") with an instrument and it must be called before the program can do anything with an
instrument or work in simulation mode.

The Initialize() method has a number of options that can be defined (see Initialize Options below).
In this example, we prepare the Initialize() method by defining only a few of the parameters, then
we call the Initialize() method with those parameters:

To determine the VsaResourceName and VsgResourceName
• If you are using Simulate Mode, you can set the Resource Name address string to:

string VsaResourceName = “%”;
string VsgResourceName = “%”;

• If you are actually establishing a communication link (an "I/O session") with an instrument, you

need to determine the Resource Name address string (VISA address string) that is needed.
You can use an IO application such as Agilent Connection Expert, Agilent Command Expert,
National Instruments Measurement and Automation Explorer (MAX), or you can use the
Agilent product’s Soft Front Panel (SFP) to get the physical Resource Name string.

Using the M938xA Soft Front Panel, you might get the following Resource Name address string.

Module
Name

M9311A PXIe
Modulator

M9310A PXIe
Source Output

M9301A PXIe
Synthesizer

M9300A PXIe
Reference

Slot
Number

2 4 5 6

VISA
Address

PXI8::0::0::INSTR; PXI11::0::0::INSTR; PXI12::0::0::INSTR; PXI13::0::0::INSTR;

string VsgResourceName =
“PXI8::0::0::INSTR;PXI11::0::0::INSTR;PXI12::0::0::INSTR;PXI13::0::0::INSTR
”;

Programming Guide (M9300-90080) 19 of 56

Using the M9391A Soft Front Panel, you might get the following Resource Name address string.

Module
Name

M9301A PXIe
Synthesizer

M9350A PXIe
Downconverter

M9214A PXIe
IF Digitizer

Slot
Number

7 8 9

VISA
Address

PXI14::0::0::INSTR; PXI10::0::0::INSTR; PXI9::0::0::INSTR;

string VsaResourceName =
“PXI14::0::0::INSTR;PXI10::0::0::INSTR;PXI9::0::0::INSTR;

Set the Initialize()Parameters
Note: Although the Initialize() method has a number of options that can be defined (see Initialize
Options below), we are showing this example with a minimum set of options to help minimize complexity.

// The M9300A PXIe Reference should be included as one of the modules in
// either the M9381A PXIe VSG configuration of modules or the AgModularVsa
// configuration of modules (or the M9391A PXIe VSA configuration of modules).
//
// If the M9300A PXIe Reference is only included in one configuration,
// that configuration should be initialized first.
// See “Understanding M9300A Frequency Reference Sharing”.

string VsgResourceName =
“PXI8::0::0::INSTR;PXI11::0::0::INSTR;PXI12::0::0::INSTR;PXI13::0::0::INSTR”;

string VsaResourceName =
“PXI14::0::0::INSTR;PXI10::0::0::INSTR;PXI9::0::0::INSTR;

bool IdQuery = true;
bool Reset = true;

string VsgOptionString = "QueryInstrStatus=true, Simulate=false, DriverSetup=
Model=VSG, Trace=false";

string VsaOptionString = "QueryInstrStatus=true, Simulate=false, DriverSetup=
Model=VSA, Trace=false";

Programming Guide (M9300-90080) 20 of 56

Call the Initialize() Method with the Set Parameters
// Initialize the drivers
VsgDriver.Initialize(VsgResourceName, IdQuery, Reset, VsgOptionString);
Console.WriteLine("VSG Driver Initialized");

VsaDriver.Initialize(VsaResourceName, IdQuery, Reset, VsaOptionString);
Console.WriteLine("VSA Driver Initialized");

The above example shows how IntelliSense is invoked by simply rolling the cursor over the word
“Initialize”.

Note: One of the key advantages of using C# in the Microsoft Visual Studio Integrated Development
Environment (IDE) is IntelliSense. IntelliSense is a form of auto-completion for variable names and
functions and a convenient way to access parameter lists and ensure correct syntax. This feature
also enhances software development by reducing the amount of keyboard input required.

Programming Guide (M9300-90080) 21 of 56

Understanding Initialize Options
The following table describes options that are most commonly used with the Initialize() method.

Property Type and Example Value

Description of Property

string ResourceName =
PXI[bus]::device[::function][::INSTR]

string ResourceName =
“PXI13::0::0::INSTR;
PXI14::0::0::INSTR;
PXI15::0::0::INSTR;
PXI16::0::0::INSTR”;

VsgResourceName or
VsaResourceName – The driver is typically
initialized using a physical resource name
descriptor, often a VISA resource descriptor.

See the above procedure:
“To determine the VsgResourceName and
VsaResourceName”

bool IdQuery = true;

IdQuery - Setting the ID query to false
prevents the driver from verifying that the
connected instrument is the one the driver was
written for because if IdQuery is set to true,
this will query the instrument model and fail
initialization if the model is not supported by
the driver.

bool Reset = true;

Reset - Setting Reset to true tells the driver
to initially reset the instrument.

string OptionString =
"QueryInstrStatus=true, Simulate=true,

OptionString - Setup the following
initialization options:
o QueryInstrStatus=true

(Specifies whether the IVI specific driver
queries the instrument status at the end of
each user operation.)

o Simulate=true (Setting Simulate
to true tells the driver that it should not
attempt to connect to a physical
instrument, but use a simulation of the
instrument instead.)

o Cache=false (Specifies whether or
not to cache the value of properties.)

o InterchangeCheck=false
(Specifies whether the IVI specific driver
performs interchangeability checking.)

o RangeCheck=false (Specifies

Programming Guide (M9300-90080) 22 of 56

whether the IVI specific driver validates
attribute values and function parameters.)

o RecordCoercions=false
(Specifies whether the IVI specific driver
keeps a list of the value coercions it makes
for ViInt32 and ViReal64 attributes.)

DriverSetup= Trace=false";

o DriverSetup= (This is used to
specify settings that are supported by the
driver, but not defined by IVI. If the Options
String parameter (OptionString in this
example) contains an assignment for the
Driver Setup attribute, the Initialize
function assumes that everything following
'DriverSetup=' is part of the assignment.)

o Model=VSG or Model=VSA
(Instrument model to use during
simulation.)

o Trace=false (If false, an output trace
log of all driver calls is not saved in an XML
file.)

If these drivers were installed, additional information can be found under “Initializing the IVI-COM Driver”
from the following:

AgM938x IVI Driver Reference
Start > All Programs > Agilent IVI Drivers > AgM938x Source > Documentation

AgM9391 IVI Driver Reference
Start > All Programs > Agilent IVI Drivers > AgM9391A VSA > Documentation

Programming Guide (M9300-90080) 23 of 56

Understanding M9300A Reference Sharing
The M9300A PXIe Reference can be shared by up to five configurations of modules that can be made up of
the M9391A PXIe VSA or the M9381A PXIe VSG or both. The M9300A PXIe Reference must be included as
one of the modules in at least one of these configurations. The configuration of modules that is initialized
first must include the M9300A PXIe Reference so that the other configurations that depend on the reference
signal get the signal they are expecting. If the configuration of modules that is initialized first does not
include the M9300A PXIe Reference, unlock errors will occur.

Example: M9300A PXIe Reference as Part of the M9381A PXIe VSG Configuration of Modules
The M9381A PXIe VSG should be initialized first before initializing the VSA if:

• M9381A PXIe VSG configuration of modules includes:
o M9311A PXIe Modulator
o M9310A PXIe Source Output
o M9301A PXIe Synthesizer
o M9300A PXIe Reference // Note that the M9300A PXIe Reference is part of the M9381A PXIe VSG

configuration of modules.

string VsgResourceName =
“PXI8::0::0::INSTR;PXI11::0::0::INSTR;PXI12::0::0::INSTR;PXI13::0::0:
:INSTR”;

• M9391A PXIe VSA configuration of modules includes:
o M9301A PXIe Synthesizer
o M9350A PXIe Downconverter
o M9214A PXIe IF Digitizer

string VsaResourceName =
“PXI14::0::0::INSTR;PXI10::0::0::INSTR;PXI9::0::0::INSTR”;

Example: M9300A PXIe Reference as Part of the M9391A PXIe VSA Configuration of Modules
The M9391A PXIe VSA should be initialized first before initializing the M9381A PXIe VSG if:

• M9381A PXIe VSG configuration of modules includes:
o M9311A PXIe Modulator
o M9310A PXIe Source Output
o M9301A PXIe Synthesizer

string VsgResourceName =
“PXI8::0::0::INSTR;PXI11::0::0::INSTR;PXI12::0::0::INSTR”;

Programming Guide (M9300-90080) 24 of 56

• M9391A PXIe VSA configuration of modules includes:
o M9300A PXIe Reference // Note that the M9300A PXIe Reference is part of the M9391A PXIe VSA

configuration of modules.
o M9301A PXIe Synthesizer
o M9350A PXIe Downconverter
o M9214A PXIe IF Digitizer

string VsaResourceName =
“PXI14::0::0::INSTR;PXI10::0::0::INSTR;PXI9::0::0::INSTR;PXI13::0::0:
:INSTR;

Example: M9300A PXIe Reference as Part of the Both Configurations of Modules
The M9391A PXIe VSA or the M9381A PXIe VSG can be initialized first since the

 M9300A PXIe Reference is included in both configurations of modules:

• M9381A PXIe VSG configuration of modules includes:
o M9311A PXIe Modulator
o M9310A PXIe Source Output
o M9301A PXIe Synthesizer
o M9300A PXIe Reference // Note that the M9300A PXIe Reference is part of the M9381A PXIe VSG

configuration of modules.

string VsgResourceName =
“PXI8::0::0::INSTR;PXI11::0::0::INSTR;PXI12::0::0::INSTR”;PXI13::0::0
::INSTR;

• M9391A PXIe VSA configuration of modules includes:
o M9300A PXIe Reference // Note that the M9300A PXIe Reference is part of the M9391A PXIe VSA

configuration of modules.
o M9301A PXIe Synthesizer
o M9350A PXIe Downconverter
o M9214A PXIe IF Digitizer

string VsaResourceName =
“PXI14::0::0::INSTR;PXI10::0::0::INSTR;PXI9::0::0::INSTR;PXI13::0::0:
:INSTR;

Programming Guide (M9300-90080) 25 of 56

Step 6 – Write the Program Steps
At this point, you can add program steps that use the driver instances to perform tasks.

Example: Using the Soft Front Panel to Write Program Commands
You may find it useful when developing a program to use the instrument's Soft Front Panel (SFP)
"Driver Call Log"; this driver call log is used to view a list of driver calls that have been performed when
changes are made to the controls on the soft front panel.

In this example, open the Soft Front Panel for the M938xA PXIe VSG and perform the following steps:

1. Set the output frequency to 1 GHz.
2. Set the output level to 0 dBm.
3. Enable the ALC.
4. Enable the RF Output.

AgM938x is the driver name used by the SFP. VsgDriver is the instance of the driver that is used
in this example. This instance would have been
created in, “Step 4 – Create Instances of the
M9381A and M9391A”.

IAgM938x VsgDriver = new AgM938x();

// Set the output frequency to 1 GHz
VsgDriver.RF.Frequency = 1000000000;
// Set the output level to 0 dBm
VsgDriver.RF.Level = 0;
// Enables the ALC
VsgDriver.ALC.Enabled = true;
// Enables the RF Output
VsgDriver.RF.OutputEnabled = true;
// Waits until the list is finished or the
specified time passes
bool retval =
VsgDriver.List.WaitUntilComplete();

…or you could even use:

// Waits 100 ms until output is settled
before producing signal
bool retval =
VsgDriver.RF.WaitUntilSettled(100);

Programming Guide (M9300-90080) 26 of 56

Step 7 – Close the Driver
Calling Close() at the end of the program is required by the IVI specification when using any IVI driver.

Important! Close() may be the most commonly missed step when using an IVI driver. Failing to do this
could mean that system resources are not freed up and your program may behave unexpectedly on
subsequent executions.

 {
 if (VsaDriver!= null && VsaDriver.Initialized)
 {
 // Close the VSA driver
 VsaDriver.Close();
 Console.WriteLine("VSA Driver Closed\n");
 }

 if (VsgDriver != null && VsgDriver.Initialized)
 {
 // Close the VSG driver
 VsgDriver.Close();
 Console.WriteLine("VSG Driver Closed");
 }
 }

Building and Running a Complete Example Program Using Visual C#
Build your console application and run it to verify it works properly.

1. Open the solution file SolutionNameThatYouUsed.sln in Visual Studio 2008.

2. Set the appropriate platform target for your project.

In many cases, the default platform target (Any CPU) is appropriate. But, if you are using a 64-bit PC
(such as Windows 7) to build a .NET application that uses a 32-bit IVI-COM driver, you may need to
specify your project's platform target as x86.

3. Choose Project > ProjectNameThatYouUsed Properties and select "Build | Rebuild Solution".

Alternate: From the Debug menu, click Start Debugging or press the F5 key.

Example programs may be found by selecting:
C:\Program Files (x86)\Agilent\M9391\Help\Examples

Programming Guide (M9300-90080) 27 of 56

Example Programs

Example Program 1: How to Print Driver Properties, Check for Errors, and Close Driver Sessions
The following example code builds on the previously presented “Tutorial: Creating a Project with IVI-COM
Using C#” and demonstrates how to instantiate two driver instances, set the resource names and various
initialization values, initialize the two driver instances, print various driver properties for each driver
instance, check drivers for errors and report the errors if any occur, and close the drivers.

Example programs may be found by selecting:
C:\Program Files (x86)\Agilent\M9391\Help\Examples

Programming Guide (M9300-90080) 28 of 56

Example Program 1: How to Print Driver Properties, Check for Errors, and Close Driver Sessions
// Copy the following example code and compile it as a C# Console Application
// Example__VsaVsgProperties.cs
#region Specify using Directives
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Ivi.Driver.Interop;
using Agilent.AgM938x.Interop;
using Agilent.AgM9391.Interop;
using Agilent.AgModularVsa.Interop;
#endregion

namespace VsaVsgProperties
{
 class Program
 {
 static void Main(string[] args)
 {
 // Create driver instances
 IAgM938x VsgDriver = new AgM938x();
 IAgModularVsa VsaDriver = (IAgModularVsa) new AgM9391();
 try
 {
 #region Initialize Driver Instances
 string VsgResourceName =
"PXI8::0::0::INSTR;PXI11::0::0::INSTR;PXI12::0::0::INSTR;PXI13::0::0::INSTR";
 string VsaResourceName =
"PXI14::0::0::INSTR;PXI10::0::0::INSTR;PXI9::0::0::INSTR";

 bool IdQuery = true;
 bool Reset = true;

 string VsgOptionString = "QueryInstrStatus=true, Simulate=false, DriverSetup=
Model=VSG, Trace=false";

 string VsaOptionString = "QueryInstrStatus=true, Simulate=false, DriverSetup=
Model=VSA, Trace=false";

 VsgDriver.Initialize(VsgResourceName, IdQuery, Reset, VsgOptionString);
 Console.WriteLine("VSG Driver Initialized");

 VsaDriver.Initialize(VsaResourceName, IdQuery, Reset, VsaOptionString);
 Console.WriteLine("VSA Driver Initialized\n\n");
 #endregion

 #region Print Driver Properties
 // Print IviDriverIdentity properties for the PXIe VSG
 Console.WriteLine("Identifier: {0}", VsgDriver.Identity.Identifier);
 Console.WriteLine("Revision: {0}", VsgDriver.Identity.Revision);
 Console.WriteLine("Vendor: {0}", VsgDriver.Identity.Vendor);
 Console.WriteLine("Description: {0}", VsgDriver.Identity.Description);
 Console.WriteLine("Model: {0}", VsgDriver.Identity.InstrumentModel);
 Console.WriteLine("FirmwareRev: {0}",
VsgDriver.Identity.InstrumentFirmwareRevision);
 Console.WriteLine("Simulate: {0}\n", VsgDriver.DriverOperation.Simulate);

 // Print IviDriverIdentity properties for the PXIe VSA
 Console.WriteLine("Identifier: {0}", VsaDriver.Identity.Identifier);

Programming Guide (M9300-90080) 29 of 56

 Console.WriteLine("Revision: {0}", VsaDriver.Identity.Revision);
 Console.WriteLine("Vendor: {0}", VsaDriver.Identity.Vendor);
 Console.WriteLine("Description: {0}", VsaDriver.Identity.Description);
 Console.WriteLine("Model: {0}", VsaDriver.Identity.InstrumentModel);
 Console.WriteLine("FirmwareRev: {0}",
VsaDriver.Identity.InstrumentFirmwareRevision);
 Console.WriteLine("Simulate: {0}\n", VsaDriver.DriverOperation.Simulate);
 #endregion

 #region Perform Tasks
 // TO DO: Exercise driver methods and properties.
 // Put your code here to perform tasks with PXIe VSG and PXIe VSA.
 #endregion

 #region Check for Errors
 // Check VSG instrument for errors
 int VsgErrorNum = -1;
 string VsgErrorMsg = null;
 while (VsgErrorNum != 0)
 {
 VsgDriver.Utility.ErrorQuery(ref VsgErrorNum, ref VsgErrorMsg);
 Console.WriteLine("VSG ErrorQuery: {0}, {1}\n", VsgErrorNum, VsgErrorMsg);
 }

 // Check VSA instrument for errors
 int VsaErrorNum = -1;
 string VsaErrorMsg = null;
 while (VsaErrorNum != 0)
 {
 VsaDriver.Utility.ErrorQuery(ref VsaErrorNum, ref VsaErrorMsg);
 Console.WriteLine("VSA ErrorQuery: {0}, {1}\n", VsaErrorNum, VsaErrorMsg);
 }
 #endregion
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }
 finally
 {
 if (VsgDriver != null && VsgDriver.Initialized)
 {
 // Close the driver
 VsgDriver.Close();
 Console.WriteLine("VSG Driver Closed");
 }
 if (VsaDriver != null && VsaDriver.Initialized)
 {
 // Close the driver
 VsaDriver.Close();
 Console.WriteLine("VSA Driver Closed\n");
 }
 }

 Console.WriteLine("Done - Press Enter to Exit");
 Console.ReadLine();
 }
 }
}

Programming Guide (M9300-90080) 30 of 56

Disclaimer
© 2013 Agilent Technologies Inc. All rights reserved.

You have a royalty-free right to use, modify, reproduce and distribute this Sample Application (and/or any modified
version) in any way you find useful, provided that you agree that Agilent Technologies has no warranty, obligations or
liability for any Sample Application Files.

Agilent Technologies provides programming examples for illustration only. This sample program assumes that you are
familiar with the programming language being demonstrated and the tools used to create and debug procedures.
Agilent Technologies support engineers can help explain the functionality of Agilent Technologies software
components and associated commands, but they will not modify these samples to provide added functionality or
construct procedures to meet your specific needs.

Programming Guide (M9300-90080) 31 of 56

Alternate Example Program 1: How to Print Driver Properties, Check for Errors, and Close Driver Sessions
The following example program is an alternative way of performing the same tasks as the previous
Example Program 1, but uses the IAgM9391 interface instead of the IAgModularVsa interface.

When comparing this example program to Example Program 1, you should note that it does not include the
using Agilent.AgModularVsa.Interop; and also does not have to have the IVI AgModularVsa
1.0 Type Library reference added. By using the IAgM9391 interface along with the driver instance
variable M9391driver, this code would have to be updated to be used with a different future VSA module.

// Copy the following example code and compile it as a C# Console Application
// Example__VsaVsgProperties__Alternate.cs
#region Specify using Directives
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Ivi.Driver.Interop;
using Agilent.AgM938x.Interop;
using Agilent.AgM9391.Interop;
#endregion

namespace M9381_M9391_ConsoleApp_Properties
{
 class Program
 {
 static void Main(string[] args)
 {
 // Create driver instances
 IAgM938x M9381driver = new AgM938x();
 IAgM9391 M9391driver = new AgM9391();
 try
 {
 #region Initialize Driver Instances
 string M9381ResourceName =
"PXI8::0::0::INSTR;PXI11::0::0::INSTR;PXI12::0::0::INSTR;PXI13::0::0::INSTR";
 string M9391ResourceName =
"PXI14::0::0::INSTR;PXI10::0::0::INSTR;PXI9::0::0::INSTR";

 bool IdQuery = true;
 bool Reset = true;

 string M9381OptionString = "QueryInstrStatus=true, Simulate=false,
DriverSetup= Model=M9381A, Trace=false";

 string M9391OptionString = "QueryInstrStatus=true, Simulate=false,
DriverSetup= Model=M9391A, Trace=false";

 M9381driver.Initialize(M9381ResourceName, IdQuery, Reset, M9381OptionString);

Programming Guide (M9300-90080) 32 of 56

 Console.WriteLine("M9381A Driver Initialized");

 M9391driver.Initialize(M9391ResourceName, IdQuery, Reset, M9391OptionString);
 Console.WriteLine("M9391A Driver Initialized\n\n");
 #endregion

 #region Print Driver Properties
 // Print IviDriverIdentity properties for the M9381A PXIe VSG
 Console.WriteLine("Identifier: {0}", M9381driver.Identity.Identifier);
 Console.WriteLine("Revision: {0}", M9381driver.Identity.Revision);
 Console.WriteLine("Vendor: {0}", M9381driver.Identity.Vendor);
 Console.WriteLine("Description: {0}", M9381driver.Identity.Description);
 Console.WriteLine("Model: {0}", M9381driver.Identity.InstrumentModel);
 Console.WriteLine("FirmwareRev: {0}",
M9381driver.Identity.InstrumentFirmwareRevision);
 Console.WriteLine("Simulate: {0}\n", M9381driver.DriverOperation.Simulate);

 // Print IviDriverIdentity properties for the M9391A PXIe VSA
 Console.WriteLine("Identifier: {0}", M9391driver.Identity.Identifier);
 Console.WriteLine("Revision: {0}", M9391driver.Identity.Revision);
 Console.WriteLine("Vendor: {0}", M9391driver.Identity.Vendor);
 Console.WriteLine("Description: {0}", M9391driver.Identity.Description);
 Console.WriteLine("Model: {0}", M9391driver.Identity.InstrumentModel);
 Console.WriteLine("FirmwareRev: {0}",
M9391driver.Identity.InstrumentFirmwareRevision);
 Console.WriteLine("Simulate: {0}\n", M9391driver.DriverOperation.Simulate);
 #endregion

 #region Perform Tasks
 // TO DO: Exercise driver methods and properties.
 // Put your code here to perform tasks w/ M9381A PXIe VSG and M9391A PXIe VSA.
 #endregion

 #region Check for Errors
 // Check M9381A instrument for errors
 int M9381errorNum = -1;
 string M9381errorMsg = null;
 while (M9381errorNum != 0)
 {
 M9381driver.Utility.ErrorQuery(ref M9381errorNum, ref M9381errorMsg);
 Console.WriteLine("M9381A ErrorQuery: {0}, {1}\n", M9381errorNum,
M9381errorMsg);
 }

 // Check M9391A instrument for errors
 int M9391errorNum = -1;
 string M9391errorMsg = null;
 while (M9391errorNum != 0)
 {
 M9391driver.Utility.ErrorQuery(ref M9391errorNum, ref M9391errorMsg);
 Console.WriteLine("M9391A ErrorQuery: {0}, {1}\n", M9391errorNum,
M9391errorMsg);
 }
 #endregion
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }
 finally
 {

Programming Guide (M9300-90080) 33 of 56

 if (M9381driver != null && M9381driver.Initialized)
 {
 // Close the driver
 M9381driver.Close();
 Console.WriteLine("M9381A Driver Closed");
 }
 if (M9391driver != null && M9391driver.Initialized)
 {
 // Close the driver
 M9391driver.Close();
 Console.WriteLine("M9391A Driver Closed\n");
 }
 }

 Console.WriteLine("Done - Press Enter to Exit");
 Console.ReadLine();
 }
 }
}

Disclaimer
© 2013 Agilent Technologies Inc. All rights reserved.

You have a royalty-free right to use, modify, reproduce and distribute this Sample Application (and/or any modified
version) in any way you find useful, provided that you agree that Agilent Technologies has no warranty, obligations or
liability for any Sample Application Files.

Agilent Technologies provides programming examples for illustration only. This sample program assumes that you are
familiar with the programming language being demonstrated and the tools used to create and debug procedures.
Agilent Technologies support engineers can help explain the functionality of Agilent Technologies software
components and associated commands, but they will not modify these samples to provide added functionality or
construct procedures to meet your specific needs.

Programming Guide (M9300-90080) 34 of 56

Understanding PA / FEM Measurements
The RF front end of a product includes all of the components between an antenna and the baseband device
and the purpose of an RF front end semiconductor is to upconvert a baseband signal to RF that can be used
for transmission by an antenna. It can also be used to downconvert an RF signal that can be processed with
ADC circuitry. As an example, the RF signal that is received by a cellular phone is the input into the front
end circuitry and the output is a down-converted analog signal in the intermediate frequency (IF) range. The
down-converted signal is the input to a baseband device, an ADC. For the transmit side, a DAC generates
the signal to be up-converted, amplified, and sent to the antenna for transmission. Depending on whether
the system is a Wi-Fi, GPS, or cellular radio will require different characteristics of the front end devices.

RF front end devices fall into a few major categories: RF Power Amplifiers, RF Filters and Switches, and
FEMs [Front End Modules].

• RF Power Amplifiers and RF Filters and Switches typically require the following:

o PA [Power Amplifier] – Production Tests include:

 Channel Power - Power Acquisition Mode is used to return one value back through

the API.

 ACPR [Adjacent Channel Power Ratio] – When making fast ACPR measurements,
"Baseband Tuning" is used to digitally tune the center frequency in order to make
channel power measurements, at multiple offsets, using the Power Acquisition
interface.

 Servo Loop - When measuring a power amplifier, one of the key measurements is
performing a Servo Loop because when you measure a power amplifier:

• it is typically specified at a specific output power
• there is a need to adjust the source input level until you measure the exact

power level - to do this, you will continually adjust the source until you
achieve the specified output power then you make all of the ACPR and
harmonics parametric measurements at that level.

• FEMs [Front End Modules] – which could be a combination of multiple front end functions in a
single module or even a "Switch Matrix" that switches various radios (such as Wi-Fi, GSM, PCS,
Bluetooth, etc.) to the antenna.

Programming Guide (M9300-90080) 35 of 56

Test Challenges Faced by Power Amplifier Testing
• The need to quickly adjust power level inputs to the device under test (DUT).
• The need to assess modulation performance (i.e., ACPR and EVM) at high output power levels.

The figure below shows a simplified block diagram for the M9381A PXIe VSG and M9391A PXIe VSA in a
typical PA / FEM test system.

Typical power amplifier modules require an input power level of 0 to + 5 dBm, digitally modulated according
to communication standards such as WCDMA or LTE. The specified performance of the power amplifier or
front end module is normally set at a specific output level of the DUT. If the devices have small variations in
gain, it may be necessary to adjust the power level from the VSG to get the correct output level of the DUT.
Only after the DUT output level is set at the correct value can the specified parameters be tested. The time
spent adjusting the VSG to get the correct DUT output power can be a major contributor to the test time and
the overall cost of test.

The VSG is connected to the DUT using a cable and switches. The switching may be used to support testing
of multi-band modules or multi-site testing. The complexity of the switching depends on the number of
bands in the devices and the number of test sites supported by the system. The DUTs are typically inserted
into the test fixture using an automated part handler. In some cases, several feet of cable is required
between the VSG and the input of the DUT.

The combination of the RF cables and the switching network can add several dB of loss between the output
of the VSG and the input of the DUT, which requires higher output levels from the VSG. Since the tests are
performed with a modulated signal, the VSG must also have adequate modulation performance at the higher
power levels.

Programming Guide (M9300-90080) 36 of 56

Performing a Channel Power Measurement, Using Immediate Trigger

Standard Sample
Rate

Channel Filter
Type

Channel Filter
Parameter

Channel Filter
Bandwidth

Channel
Offsets

WCDMA 5 MHz RRC 0.22 3.84 MHz 5, 10 MHz

LTE 10 MHz FDD 11.25
MHz

Rectangular N/A 9 MHz 10, 20 MHz

LTE 10 MHz TDD 11.25
MHz

Rectangular N/A 9 MHz 10, 20 MHz

1xEV-DO 2 MHz RRC 0.22 1.23 MHz 1.25, 2.5 MHz

TD-SCDMA 2 MHz RRC 0.22 1.28 MHz 1.6, 3.2 MHz

GSM/EDGE
Channel

1.25 MHz Gaussian 0.3 271 kHz

GSM/EDGE
ORFS

1.25 MHz TBD TBD 30 kHz 400, 600kHz

Example Program 2: How to Perform Channel Power Measurement, Using Immediate Trigger
(Settings for WCDMA Signal)
The following example code demonstrates how to instantiate a driver instance, set the resource name and
various initialization values, initialize the two driver instances:

1. Send RF and Power Acquisition commands to the VSA driver and Apply changes to hardware,
2. Check the instrument queue for errors.
3. Perform a Channel Power Measurement,
4. Report errors if any occur, and close the drivers.

Example programs may be found by selecting:
C:\Program Files (x86)\Agilent\M9391\Help\Examples

Programming Guide (M9300-90080) 37 of 56

Programming Guide (M9300-90080) 38 of 56

Pseudo-code of How to Perform Channel Power Measurement, Using Immediate Trigger
Initialize Driver for VSA, Check for Errors

• Send RF Settings to VSA Driver:
o Frequency
o Level
o Peak to Average Ratio
o Conversion Mode
o IF Bandwidth
o Set Acquisition Mode to “Power”

• Send Power Acquisition Setting to VSA Driver:
o Sample Rate
o Duration
o Channel Filter

• Apply Method to Send Changes to Hardware
o Wait for Hardware to Settle

• Send Arm Method to VSA
• Send Read Power Method to VSA

Close Driver for VSA

Example Program 2: How to Perform Channel Power Measurement, Using Immediate Trigger
// Copy the following example code and compile it as a C# Console Application
// Example__ChannelPowerImmediateTrigger.cs
#region Specify using Directives
 using System;
 using System.Collections.Generic;
 using System.Linq;
 using System.Text;
 using Ivi.Driver.Interop;
 using Agilent.AgM9391.Interop;
 using Agilent.AgModularVsa.Interop;
#endregion

namespace ChannelPowerImmTrigger
{
 class Program
 {
 static void Main(string[] args)
 {
 // Create driver instances
 IAgModularVsa VsaDriver = (IAgModularVsa) new AgM9391();
 try
 {
 #region Initialize Driver Instances
 string VSAResourceName =
"PXI14::0::0::INSTR;PXI10::0::0::INSTR;PXI9::0::0::INSTR;PXI13::0::0::INSTR";

 bool IdQuery = true;
 bool Reset = true;

 string VSAOptionString = "QueryInstrStatus=true, Simulate=false,
DriverSetup= Model=M9391A, Trace=false";

Programming Guide (M9300-90080) 39 of 56

 VsaDriver.Initialize(VSAResourceName, IdQuery, Reset, VSAOptionString);
 Console.WriteLine("VSA Driver Initialized\n");
 #endregion

 #region Check Instrument Queue for Errors
 // Check VSA instrument for errors
 int VsaErrorNum = -1;
 string VsaErrorMsg = null;
 while (VsaErrorNum != 0)
 {
 VsaDriver.Utility.ErrorQuery(ref VsaErrorNum, ref VsaErrorMsg);
 Console.WriteLine("VSA ErrorQuery: {0}, {1}\n", VsaErrorNum,
VsaErrorMsg);
 }
 #endregion

 #region Receiver Settings
 // Receiver Settings
 double Frequency = 2000000000.0;
 double Level = 5;
 double RmsValue = 5;
 double ChannelTime = 0.0001;
 double MeasureBW = 5000000.0;
 AgModularVsaChannelFilterShapeEnum FilterType =
AgModularVsaChannelFilterShapeEnum.AgModularVsaChannelFilterShapeRootRaisedCosine;
 double FilterAlpha = 0.22;
 double FilterBw = 3840000.0;
 double MeasuredPower = 0;
 bool Overload = true;
 #endregion

 #region Run Commands
 // Setup the RF Path in the Receiver
 VsaDriver.RF.Frequency = Frequency;
 VsaDriver.RF.Power = Level;
 VsaDriver.RF.Conversion =
AgModularVsaConversionEnum.AgModularVsaConversionAuto;
 VsaDriver.RF.PeakToAverage = RmsValue;
 VsaDriver.RF.IFBandwidth = 40000000.0; // Use IF filter wide enough for
all adjacent channels
 // Configure the Acquisition
 VsaDriver.AcquisitionMode =
AgModularVsaAcquisitionModeEnum.AgModularVsaAcquisitionModePower;
 VsaDriver.PowerAcquisition.Bandwidth = MeasureBW; // 5 MHz
 VsaDriver.PowerAcquisition.Duration = ChannelTime; // 100 us
 VsaDriver.PowerAcquisition.ChannelFilter.Configure(FilterType,
FilterAlpha, FilterBw);
 // Send Changes to hardware
 VsaDriver.Apply();
 VsaDriver.WaitUntilSettled(100);

 string response = "y";
 while (string.Compare(response, "y") == 0) {
 Console.WriteLine("Press Enter to Run Test");
 Console.ReadLine();

 VsaDriver.Arm();
 VsaDriver.PowerAcquisition.ReadPower(0,
AgModularVsaPowerUnitsEnum.AgModularVsaPowerUnitsdBm, ref MeasuredPower, ref
Overload);
 Console.WriteLine("Measured Power: " + MeasuredPower + " dBm");

Programming Guide (M9300-90080) 40 of 56

 Console.WriteLine(String.Format("Overload = {0}", Overload ? "true" :
"false"));
 Console.WriteLine("Repeat? y/n");
 response = Console.ReadLine();
 }
 #endregion

 }
 catch (Exception ex)
 {
 Console.WriteLine("Exceptions for the drivers:\n");
 Console.WriteLine(ex.Message);
 }
 finally
 #region Close Driver Instances
 {
 if (VsaDriver != null && VsaDriver.Initialized)
 {
 // Close the driver
 VsaDriver.Close();
 Console.WriteLine("VSA Driver Closed\n");
 }
 }
 #endregion

 Console.WriteLine("Done - Press Enter to Exit");
 Console.ReadLine();
 }
 }
}

Disclaimer
© 2013 Agilent Technologies Inc. All rights reserved.

You have a royalty-free right to use, modify, reproduce and distribute this Sample Application (and/or any modified
version) in any way you find useful, provided that you agree that Agilent Technologies has no warranty, obligations or
liability for any Sample Application Files.

Agilent Technologies provides programming examples for illustration only. This sample program assumes that you are
familiar with the programming language being demonstrated and the tools used to create and debug procedures.
Agilent Technologies support engineers can help explain the functionality of Agilent Technologies software
components and associated commands, but they will not modify these samples to provide added functionality or
construct procedures to meet your specific needs.

Programming Guide (M9300-90080) 41 of 56

Performing a WCDMA Power Servo and ACPR Measurement
When making a WCDMA Power Servo and ACPR measurement, Servo is performed using
"Baseband Tuning" to adjust the source amplitude and then "Baseband Tuning" is used to digitally tune the
center frequency in order to make channel power measurements, at multiple offsets, using the
Power Acquisition interface of the VSA.

Note: The M9391A PXIe VSA and the M9381A PXIe VSG offers two modes
for adjusting frequency and amplitude:

• RF Tuning – allows the M9381A PXIe VSG to be set across the complete operating frequency and
amplitude range.

• Baseband Tuning – allows the frequency and amplitude to be adjusted within the IF bandwidth (160
MHz) and over a range of the output level.

Example Program 3: How to Perform a WCDMA Power Servo and ACPR Measurement
The following example code demonstrates how to instantiate two driver instances, set the resource names
and various initialization values, initialize the two driver instances:

1. Send RF and Modulation commands to the VSG driver and Apply changes to hardware,
2. Send RF and Power Acquisition commands to the VSA driver and Apply changes to hardware,
3. Run a Servo Loop until it is at the required output power from DUT,
4. Perform an ACPR Measurement for each Adjacent Channel to be measured,
5. Check drivers for errors and report the errors if any occur, and close the drivers.

Example programs may be found by selecting:
C:\Program Files (x86)\Agilent\M9391\Help\Examples

Programming Guide (M9300-90080) 42 of 56

Programming Guide (M9300-90080) 43 of 56

Pseudo-code of How to Perform a WCDMA Power Servo and ACPR Measurement
Initialize Drivers for VSG and VSA, Check for Errors

• Send RF Settings to VSG Driver:
o Frequency
o RF Level to Maximum Needed
o RF Enable On
o ALC Enable Off (for baseband power changes)

• Send Modulation Commands to VSG Driver:
o Load WCDMA Signal Studio File
o Enable Modulation
o Play ARB File
o Set ARB Scale to 0.5
o Set Baseband Power Offset to -10 dB

• Apply Method to Send Changes to Hardware
o Wait for Hardware to Settle

• Send RF Settings to VSA Driver:
o Frequency
o Level
o Peak to Average Ratio
o Conversion Mode
o IF Bandwidth
o Set Acquisition Mode to “Power”

• Send Power Acquisition Setting to VSA Driver:
o Sample Rate
o Duration
o Channel Filter

• Apply Method to Send Changes to Hardware
o Wait for Hardware to Settle

Servo Loop:

• Set Baseband Power Offset on VSG to expected value
• Send Apply Method to VSG
• Send Arm Method to VSA
• Send ReadPower Method to VSA
• Repeat Until at Required Output Power from DUT
• Last Reading is Channel Power Measurement

ACPR Measurement:

• Set Acquisition Duration Property on VSA to Value for Adjacent Channel Measurements
• Set Frequency Offset Property on VSA to Channel Offset Frequency
• Send Apply Method to VSA
• Send Arm Method to VSA
• Send ReadPower Method to VSA
• Repeat for each Adjacent Channel to be Measured

Programming Guide (M9300-90080) 44 of 56

Example Program 3: How to Perform a WCDMA Power Servo and ACPR Measurement
// Copy the following example code and compile it as a C# Console Application
// Example__PaServoAcpr.cs
// WCDMA Power Servo and ACPR Measurement
#region Specify using Directives
 using System;
 using System.Collections.Generic;
 using System.Linq;
 using System.Text;
 using Ivi.Driver.Interop;
 using Agilent.AgM938x.Interop;
 using Agilent.AgM9391.Interop;
 using Agilent.AgModularVsa.Interop;
#endregion

namespace PaServoAcpr
{
 class Program
 {
 static void Main(string[] args)
 {
 // Create driver instances
 IAgM938x VsgDriver = new AgM938x();
 IAgModularVsa VsaDriver = (IAgModularVsa) new AgM9391();
 try
 {
 #region Initialize Driver Instances
 string VsgResourceName =
"PXI8::0::0::INSTR;PXI11::0::0::INSTR;PXI12::0::0::INSTR;PXI13::0::0::INSTR";
 string VsaResourceName =
"PXI14::0::0::INSTR;PXI10::0::0::INSTR;PXI9::0::0::INSTR";

 bool IdQuery = true;
 bool Reset = true;

 string VsgOptionString = "QueryInstrStatus=true, Simulate=false,
DriverSetup= Model=VSG, Trace=false";

 string VsaOptionString = "QueryInstrStatus=true, Simulate=false,
DriverSetup= Model=VSA, Trace=false";

 VsaDriver.Initialize(VsaResourceName, IdQuery, Reset, VsaOptionString);
 Console.WriteLine("VSA Driver Initialized\n");

 VsgDriver.Initialize(VsgResourceName, IdQuery, Reset, VsgOptionString);
 Console.WriteLine("VSG Driver Initialized");

 #endregion

 #region Check Instrument Queue for Errors
 // Check VSG instrument for errors
 int VsgErrorNum = -1;
 string VsgErrorMsg = null;
 while (VsgErrorNum != 0)
 {
 VsgDriver.Utility.ErrorQuery(ref VsgErrorNum, ref VsgErrorMsg);
 Console.WriteLine("VSG ErrorQuery: {0}, {1}", VsgErrorNum,
VsgErrorMsg);
 }

Programming Guide (M9300-90080) 45 of 56

 // Check VSA instrument for errors
 int VsaErrorNum = -1;
 string VsaErrorMsg = null;
 while (VsaErrorNum != 0)
 {
 VsaDriver.Utility.ErrorQuery(ref VsaErrorNum, ref VsaErrorMsg);
 Console.WriteLine("VSA ErrorQuery: {0}, {1}\n", VsaErrorNum,
VsaErrorMsg);
 }
 #endregion

 #region Create Default Settings for WCDMA Uplink Signal
 // Source Settings
 double Frequency = 1000000000.0;
 double Level = 3;
 // If a Signal Studio waveform file is used, it may require a software
license.
 string ExamplesFolder = "C:\\Program Files (x86)\\Agilent\\M938x\\Example
Waveforms\\";
 string WaveformFile = "WCDMA_UL_DPCHH_2DPDCH_1C.wfm";
 string FileName = ExamplesFolder + WaveformFile;
 string ArbRef = "Mod Waveform";

 // Receiver Settings
 double ChannelTime = 0.0001;
 double AdjacentTime = 0.0005;
 double IfBandwidth = 40000000.0;
 double PowerOffset = 0;
 double MeasureBW = 5000000.0;
 AgModularVsaChannelFilterShapeEnum FilterType =
AgModularVsaChannelFilterShapeEnum.AgModularVsaChannelFilterShapeRootRaisedCosine;
 double FilterAlpha = 0.22;
 double FilterBw = 3840000.0;
 double[] FreqOffset = new double[] {-5000000.0, 5000000.0, -10000000.0,
10000000.0};

 double MeasuredPower = 0;
 bool Overload = true;
 double MeasuredChannelPower;
 bool ChannelPowerOverload;
 double[] MeasuredACPR = new double[4];
 double SampleRate = 0;
 double RmsValue = 0;
 double ScaleFactor = 0;
 #endregion

 #region Run Commands
 // These commands are sent to the VSG Driver, "Apply" or "PlayArb" methods
send to hardware
 VsgDriver.RF.Frequency = Frequency;
 VsgDriver.RF.Level = Level;
 VsgDriver.RF.OutputEnabled = true;
 VsgDriver.ALC.Enabled = false;
 VsgDriver.Modulation.IQ.UploadArbAgilentFile(ArbRef, FileName);
 VsgDriver.Modulation.Enabled = true;
 VsgDriver.Modulation.BasebandPower = -10;
 // Play the ARB, sending all changes to hardware
 VsgDriver.Modulation.PlayArb(ArbRef,
AgM938xStartEventEnum.AgM938xStartEventImmediate);
 VsgDriver.Modulation.Scale = 0.5;
 VsgDriver.Apply();

Programming Guide (M9300-90080) 46 of 56

 // Get the Sample Rate and RMS Value (Peak to Average Ratio) of the
Current Waveform
 AgM938xMarkerEnum RfBlankMarker = AgM938xMarkerEnum.AgM938xMarkerNone;
 AgM938xMarkerEnum AlcHoldMarker = AgM938xMarkerEnum.AgM938xMarkerNone;
 VsgDriver.Modulation.IQ.ArbInformation(ArbRef, ref SampleRate, ref
RmsValue, ref ScaleFactor, ref RfBlankMarker, ref AlcHoldMarker);

 // Setup the RF Path in the Receiver
 VsaDriver.RF.Frequency = Frequency;
 VsaDriver.RF.Power = Level + PowerOffset;
 VsaDriver.RF.Conversion =
AgModularVsaConversionEnum.AgModularVsaConversionAuto;
 VsaDriver.RF.PeakToAverage = RmsValue;
 VsaDriver.RF.IFBandwidth = IfBandwidth;
 // Configure the Acquisition
 VsaDriver.AcquisitionMode =
AgModularVsaAcquisitionModeEnum.AgModularVsaAcquisitionModePower;
 VsaDriver.PowerAcquisition.Bandwidth = MeasureBW;
 VsaDriver.PowerAcquisition.Duration = ChannelTime;
 VsaDriver.PowerAcquisition.ChannelFilter.Configure(FilterType,
FilterAlpha, FilterBw);
 // Send Changes to hardware
 VsaDriver.Apply();
 VsaDriver.WaitUntilSettled(100);

 string response = "y";
 while (string.Compare(response, "y") == 0) {
 Console.WriteLine("Press Enter to Run Test");
 Console.ReadLine();

 // Run a group of baseband power commands to change the source level
and make a power measurement at each step.
 // Simulates Servo loop timing, but does not use the measured power to
adjust the next source level
 VsaDriver.PowerAcquisition.Duration = ChannelTime;
 VsaDriver.Apply();
 double[] LevelOffset = new double[] {-3, -2, -1, -0.5, -0.75};
 for (int Index = 0;Index < LevelOffset.Length - 1;Index++) {
 VsgDriver.Modulation.BasebandPower = LevelOffset[Index];
 VsgDriver.Apply();
 VsaDriver.Arm();
 VsaDriver.PowerAcquisition.ReadPower(0,
AgModularVsaPowerUnitsEnum.AgModularVsaPowerUnitsdBm, ref MeasuredPower, ref
Overload);
 }

 // Loop Through the channel offset frequencies for an ACPR measurement
 // Use the last value of the servo loop for the channel power
 MeasuredChannelPower = MeasuredPower;
 ChannelPowerOverload = Overload;
 VsaDriver.PowerAcquisition.Duration = AdjacentTime;
 for (int Index = 0;Index < FreqOffset.Length;Index++) {
 VsaDriver.PowerAcquisition.OffsetFrequency = FreqOffset[Index];
 VsaDriver.Apply();
 VsaDriver.Arm();
 VsaDriver.PowerAcquisition.ReadPower(0,
AgModularVsaPowerUnitsEnum.AgModularVsaPowerUnitsdBm, ref MeasuredPower, ref
Overload);
 MeasuredACPR[Index] = MeasuredPower - MeasuredChannelPower;
 }

Programming Guide (M9300-90080) 47 of 56

 // Make sure the VSA frequency offset is back to 0 (on repeat)
 VsaDriver.PowerAcquisition.OffsetFrequency = 0;
 VsaDriver.Apply();
 if (ChannelPowerOverload == true) {
 Console.WriteLine("Channel Power Measurement Overload");
 }
 Console.WriteLine("Channel Power: {0} dBm", MeasuredChannelPower);
 Console.WriteLine("ACPR1 L: {0} dBc", MeasuredACPR[0]);
 Console.WriteLine("ACPR1 U: {0} dBc", MeasuredACPR[1]);
 Console.WriteLine("ACPR2 L: {0} dBc", MeasuredACPR[2]);
 Console.WriteLine("ACPR2 U: {0} dBc", MeasuredACPR[3]);

 Console.WriteLine("Repeat? y/n");
 response = Console.ReadLine();
 }
 #endregion

 }
 catch (Exception ex)
 {
 Console.WriteLine("Exceptions for the drivers:\n");
 Console.WriteLine(ex.Message);
 }
 finally
 #region Close Driver Instances
 {
 if (VsgDriver != null && VsgDriver.Initialized)
 {
 // Close the driver
 VsgDriver.Close();
 Console.WriteLine("VSG Driver Closed");
 }

 if (VsaDriver != null && VsaDriver.Initialized)
 {
 // Close the driver
 VsaDriver.Close();
 Console.WriteLine("VSA Driver Closed\n");
 }

 }
 #endregion

 Console.WriteLine("Done - Press Enter to Exit");
 Console.ReadLine();
 }
 }
}

Programming Guide (M9300-90080) 48 of 56

Disclaimer
© 2013 Agilent Technologies Inc. All rights reserved.

You have a royalty-free right to use, modify, reproduce and distribute this Sample Application (and/or any modified
version) in any way you find useful, provided that you agree that Agilent Technologies has no warranty, obligations or
liability for any Sample Application Files.

Agilent Technologies provides programming examples for illustration only. This sample program assumes that you are
familiar with the programming language being demonstrated and the tools used to create and debug procedures.
Agilent Technologies support engineers can help explain the functionality of Agilent Technologies software
components and associated commands, but they will not modify these samples to provide added functionality or
construct procedures to meet your specific needs.

Accessing Hardware-Specific Capabilities
To access hardware-specific capabilities that are not in the common IAgModularVsa interface, you must
cast the reference to the instrument to the instrument-specific interface.

As an example, we have an M9391A PXIe VSA which is referred to by an IAgModularVsa interface.
To access the specific IF output filter that is in use, we must first cast to the instrument-specific IAgM9391,
then access the hardware-specific property.

IAgModularVsa VsaDriver = new AgM9391();

AgM9391IFOutputFilterEnum IFFilter =
((IAgM9391)VsaDriver).Modules.Downconverter.IFOutputFilter;

Programming Guide (M9300-90080) 49 of 56

Appendix 1:
Routing Triggers for Four M938xA VSG
Configurations (Sharing One Reference)
The following is an example for routing triggers for four VSG configurations of modules.

 // This is where we make sure the triggers that are required for the M9381A
 // are routed properly across backplane segments on the chassis where necessary
 //
 // The M9018A has 3 trigger bus segments:
 // Bus 1: slots 1-6
 // Bus 2: slots 7-12
 // Bus 3: slots 13-18
 //
 // For each M9381A in our system, there are three requirements:
 // 1) PXI trigger from M9311A to M9310A for ALC. This defaults to trigger 7
 // 2) PXI trigger from M9301A to M9311A for front panel External Trigger.
 // This defaults to trigger 6.
 // 3) None of these triggers can conflict with each other.
 // For example, if there are two VSGs (or portions of a VSG)
 // occupying a single chassis, they cannot both use the default trigger lines.
 //
 // To satisfy these requirements, we have two tools available to us:
 // 1) Routing triggers between bus segments on the chassis
 // 2) redefining the triggers used by the M9381A.
 //
 // For this example, we examine the routings needed for a 4 channel M9381A,
 // with a single M9300A in slot 10.
 // The other VSGs are in the following locations:
 // VSG 1: slots 2-5
 // VSG 2: slots 6-9
 // VSG 3: slots 11-14
 // VSG 4: slots 15-18
 // We can make some observations about this configuration:
 // 1) VSG1 and VSG2 have conflicting backplane trigger requirements, because the
M9311A modules will be in slots
 // 2 and 6, therefore in the same bus segment
 // 2) VSG 2 crosses segment boundary 1-2
 // 3) VSG 2 and 3 have conflicting trigger requirements, because the M9301A module
from VSG 2 and M9311A module from VSG 3 will be in slots
 // 9 and 11, therefore in the same bus segment
 // 4) VSG 3 crosses segment boundary 2-3
 // 5) VSG 3 and 4 have conflicting trigger requirements, because the M9301A module
from VSG 3 and M9311A module from VSG 4 will be in slots
 // 14 and 15, therefore in the same bus segment
 // 6) VSG 1 and VSG 4 are contained entirely within one trigger bus segment.
 //
 // To come up with a routing, we have to address all 5 of these issues above to
satisfy the 3 requirements outlined earlier.
 //
 // The simplest routing turns out to be the following
 // 1) VSG 1 and VSG 3 use default triggers 6 and 7

Programming Guide (M9300-90080) 50 of 56

 // 2) VSG 2 and VSG 4 use triggers 5 and 8

 // Route triggers on chassis backplane. Note that these will persist until a
power cycle, so this section could be performed in a separate
 // program that runs at startup, for example as a service
 M9018.TriggerBus.Connect(0,
Agilent.AgM9018.Interop.AgM9018TrigBusEnum.AgM9018TrigBus2To1);
 M9018.TriggerBus.Connect(5,
Agilent.AgM9018.Interop.AgM9018TrigBusEnum.AgM9018TrigBus1To2);
 M9018.TriggerBus.Connect(6,
Agilent.AgM9018.Interop.AgM9018TrigBusEnum.AgM9018TrigBus3To2);
 M9018.TriggerBus.Connect(7,
Agilent.AgM9018.Interop.AgM9018TrigBusEnum.AgM9018TrigBus2To3);

 // Redefine triggers for VSG 2 and 4.
 M9381chan2.System.PXIResources.AddHint("M9311A", "M9310A", "ALC TRIGGER",
Agilent.AgM938x.Interop.AgM938xPXIResourceTypeEnum.AgM938xPXIResourceTypeTTL_TRIGGER,
Agilent.AgM938x.Interop.AgM938xPXIResourcesEnum.AgM938xPXIResourcesTTL_TRIGGER_5);
 M9381chan2.System.PXIResources.AddHint("M9301A", "M9311A", "EXTERNAL TRIGGER",
Agilent.AgM938x.Interop.AgM938xPXIResourceTypeEnum.AgM938xPXIResourceTypeTTL_TRIGGER,
Agilent.AgM938x.Interop.AgM938xPXIResourcesEnum.AgM938xPXIResourcesTTL_TRIGGER_0);
 M9381chan4.System.PXIResources.AddHint("M9311A", "M9310A", "ALC TRIGGER",
Agilent.AgM938x.Interop.AgM938xPXIResourceTypeEnum.AgM938xPXIResourceTypeTTL_TRIGGER,
Agilent.AgM938x.Interop.AgM938xPXIResourcesEnum.AgM938xPXIResourcesTTL_TRIGGER_5);
 M9381chan4.System.PXIResources.AddHint("M9301A", "M9311A", "EXTERNAL TRIGGER",
Agilent.AgM938x.Interop.AgM938xPXIResourceTypeEnum.AgM938xPXIResourceTypeTTL_TRIGGER,
Agilent.AgM938x.Interop.AgM938xPXIResourcesEnum.AgM938xPXIResourcesTTL_TRIGGER_0);

 // Do other VSG things

Example programs may be found by selecting:
C:\Program Files (x86)\Agilent\M9391\Help\Examples

// Copy the following example code and compile it as a C# Console Application
using Agilent.AgM938x.Interop;
using Agilent.AgM9300.Interop;
using Agilent.AgM9018.Interop;
using System;
using System.Windows.Forms;

namespace VSG_SFP
{
 public partial class TriggerRouting
 {
 public IAgM938xEx M9381chan1;
 public IAgM938xEx M9381chan2;
 public IAgM938xEx M9381chan3;
 public IAgM938xEx M9381chan4;
 public IAgM9018 M9018; // chassis

 public string M9381Chan1resource = "M9381Chan1";
 public string M9381Chan2resource = "M9381Chan2";
 public string M9381Chan3resource = "M9381Chan3";
 public string M9381Chan4resource = "M9381Chan4";
 public string M9018resource = "PXI15::0::0::INSTR";

 public void RouteTriggers()
 {
 int errorcode = -1; string message = string.Empty;
 bool idquery = true;

Programming Guide (M9300-90080) 51 of 56

 bool reset = true;
 bool simulateHardware = false;
 string M9381options = string.Format(
 "QueryInstrStatus=true, Simulate={0}, M9381Setup= Model=,
Trace=false", (simulateHardware ? "true" : "false"));
 string M9018options = string.Format(
 "QueryInstrStatus=true, Simulate={0}, M9018Setup= Model=,
Trace=false", (simulateHardware ? "true" : "false"));
 try
 {
 M9381chan1 = new AgM938x();
 M9381chan2 = new AgM938x();
 M9381chan3 = new AgM938x();
 M9381chan4 = new AgM938x();
 M9018 = new AgM9018();

 // Initialize M9018A Chassis
 M9018.Initialize(M9018resource, idquery, reset, M9018options);

 //Initialize M9381 Channel 1
 M9381chan1.Initialize(M9381Chan1resource, idquery, reset,
M9381options);

 // Clear startup messages & warnings if any.
 do
 {
 M9381chan1.Utility.ErrorQuery(ref errorcode, ref message);
 if (errorcode != 0)
 Console.WriteLine(message);
 } while (errorcode != 0);

 //Initialize M9381 Channel 2
 M9381chan2.Initialize(M9381Chan2resource, idquery, reset,
M9381options);

 // Clear startup messages & warnings if any.
 do
 {
 M9381chan2.Utility.ErrorQuery(ref errorcode, ref message);
 if (errorcode != 0)
 Console.WriteLine(message);
 } while (errorcode != 0);

 //Initialize M9381 Channel 3
 M9381chan3.Initialize(M9381Chan3resource, idquery, reset,
M9381options);

 // Clear startup messages & warnings if any.
 do
 {
 M9381chan3.Utility.ErrorQuery(ref errorcode, ref message);
 if (errorcode != 0)
 Console.WriteLine(message);
 } while (errorcode != 0);

 //Initialize M9381 Channel 4
 M9381chan4.Initialize(M9381Chan4resource, idquery, reset,
M9381options);

 // Clear startup messages & warnings if any.
 do

Programming Guide (M9300-90080) 52 of 56

 {
 M9381chan4.Utility.ErrorQuery(ref errorcode, ref message);
 if (errorcode != 0)
 Console.WriteLine(message);
 } while (errorcode != 0);

 // This is where we do the work to make sure the triggers that are
required for the M9381A
 // are routed properly across backplane segments on the chassis where
necessary
 //
 // The M9018A has 3 trigger bus segments:
 // Bus 1: slots 1-6
 // Bus 2: slots 7-12
 // Bus 3: slots 13-18
 //
 // For each M9381A in our system, there are three requirements:
 // 1) There must be a PXI trigger from M9311A to M9310A for ALC. This
defaults to trigger 7
 // 2) There must be a PXI trigger from M9301A to M9311A for front
panel External Trigger. This defaults to trigger 6.
 // 3) None of these triggers can conflict with each other. For
example, if there are two VSGs (or portions of a VSG)
 // occupying a single chassis, they cannot both use the default
trigger lines.
 //
 // To satisfy these requirements, we have two tools available to us:
 // 1) Routing triggers between bus segments on the chassis
 // 2) redefining the triggers used by the M9381A.
 //
 // For this example, we examine the routings needed for a 4 channel
M9381A, with a single M9300A in slot 10.
 // The other VSGs are in the following locations:
 // VSG 1: slots 2-5
 // VSG 2: slots 6-9
 // VSG 3: slots 11-14
 // VSG 4: slots 15-18
 // We can make some observations about this configuration:
 // 1) VSG1 and VSG2 have conflicting backplane trigger requirements,
because the M9311A modules will be in slots
 // 2 and 6, therefore in the same bus segment
 // 2) VSG 2 crosses segment boundary 1-2
 // 3) VSG 2 and 3 have conflicting trigger requirements, because the
M9301A module from VSG 2 and M9311A module from VSG 3 will be in slots
 // 9 and 11, therefore in the same bus segment
 // 4) VSG 3 crosses segment boundary 2-3
 // 5) VSG 3 and 4 have conflicting trigger requirements, because the
M9301A module from VSG 3 and M9311A module from VSG 4 will be in slots
 // 14 and 15, therefore in the same bus segment
 // 6) VSG 1 and VSG 4 are contained entirely within one trigger bus
segment.
 //
 // To come up with a routing, we have to address all 5 of these issues
above to satisfy the 3 requirements outlined earlier.
 //
 // The simplest routing turns out to be the following
 // 1) VSG 1 and VSG 3 use default triggers 6 and 7
 // 2) VSG 2 and VSG 4 use triggers 5 and 8

 // Route triggers on chassis backplane. Note that these will persist
until a power cycle, so this section could be performed in a separate

Programming Guide (M9300-90080) 53 of 56

 // program that runs at startup, for example as a service
 M9018.TriggerBus.Connect(0,
Agilent.AgM9018.Interop.AgM9018TrigBusEnum.AgM9018TrigBus2To1);
 M9018.TriggerBus.Connect(5,
Agilent.AgM9018.Interop.AgM9018TrigBusEnum.AgM9018TrigBus1To2);
 M9018.TriggerBus.Connect(6,
Agilent.AgM9018.Interop.AgM9018TrigBusEnum.AgM9018TrigBus3To2);
 M9018.TriggerBus.Connect(7,
Agilent.AgM9018.Interop.AgM9018TrigBusEnum.AgM9018TrigBus2To3);

 // Redefine triggers for VSG 2 and 4.
 M9381chan2.System.PXIResources.AddHint("M9311A", "M9310A", "ALC
TRIGGER",
Agilent.AgM938x.Interop.AgM938xPXIResourceTypeEnum.AgM938xPXIResourceTypeTTL_TRIGGER,
Agilent.AgM938x.Interop.AgM938xPXIResourcesEnum.AgM938xPXIResourcesTTL_TRIGGER_5);
 M9381chan2.System.PXIResources.AddHint("M9301A", "M9311A", "EXTERNAL
TRIGGER",
Agilent.AgM938x.Interop.AgM938xPXIResourceTypeEnum.AgM938xPXIResourceTypeTTL_TRIGGER,
Agilent.AgM938x.Interop.AgM938xPXIResourcesEnum.AgM938xPXIResourcesTTL_TRIGGER_0);
 M9381chan4.System.PXIResources.AddHint("M9311A", "M9310A", "ALC
TRIGGER",
Agilent.AgM938x.Interop.AgM938xPXIResourceTypeEnum.AgM938xPXIResourceTypeTTL_TRIGGER,
Agilent.AgM938x.Interop.AgM938xPXIResourcesEnum.AgM938xPXIResourcesTTL_TRIGGER_5);
 M9381chan4.System.PXIResources.AddHint("M9301A", "M9311A", "EXTERNAL
TRIGGER",
Agilent.AgM938x.Interop.AgM938xPXIResourceTypeEnum.AgM938xPXIResourceTypeTTL_TRIGGER,
Agilent.AgM938x.Interop.AgM938xPXIResourcesEnum.AgM938xPXIResourcesTTL_TRIGGER_0);

 // Do other VSG things
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
 }

 }
}

Disclaimer
© 2013 Agilent Technologies Inc. All rights reserved.

You have a royalty-free right to use, modify, reproduce and distribute this Sample Application (and/or any modified
version) in any way you find useful, provided that you agree that Agilent Technologies has no warranty, obligations or
liability for any Sample Application Files.

Agilent Technologies provides programming examples for illustration only. This sample program assumes that you are
familiar with the programming language being demonstrated and the tools used to create and debug procedures.
Agilent Technologies support engineers can help explain the functionality of Agilent Technologies software
components and associated commands, but they will not modify these samples to provide added functionality or
construct procedures to meet your specific needs.

Programming Guide (M9300-90080) 54 of 56

Glossary
ADE (application development environment) — An integrated suite of software development programs.
ADEs may include a text editor, compiler, and debugger, as well as other tools used in creating,
maintaining, and debugging application programs. Example: Microsoft Visual Studio.

API (application programming interface) — An API is a well-defined set of set of software routines
through which application program can access the functions and services provided by an underlying
operating system or library. Example: IVI Drivers

C# (pronounced “C sharp”) — C-like, component-oriented language that eliminates much of the
difficulty associated with C/C++.

Direct I/O — commands sent directly to an instrument, without the benefit of, or interference from a
driver. SCPI Example: SENSe:VOLTage:RANGe:AUTO Driver (or device driver) — a collection of
functions resident on a computer and used to control a peripheral device.

DLL (dynamic link library) — An executable program or data file bound to an application program and
loaded only when needed, thereby reducing memory requirements. The functions or data in a DLL can
be simultaneously shared by several applications.

Input/Output (I/O) layer — The software that collects data from and issues commands to peripheral
devices. The VISA function library is an example of an I/O layer that allows application programs and
drivers to access peripheral instrumentation.

IVI (Interchangeable Virtual Instruments) — a standard instrument driver model defined by the IVI
Foundation that enables engineers to exchange instruments made by different manufacturers without
rewriting their code. www.ivifoundation.org

IVI COM drivers (also known as IVI Component drivers) — IVI COM presents the IVI driver as a COM
object in Visual Basic. You get all the intelligence and all the benefits of the development environment
because IVI COM does things in a smart way and presents an easier, more consistent way to send
commands to an instrument. It is similar across multiple instruments.

Microsoft COM (Component Object Model) — The concept of software components is analogous to
that of hardware components: as long as components present the same interface and perform the same
functions, they are interchangeable. Software components are the natural extension of DLLs. Microsoft
developed the COM standard to allow software manufacturers to create new software components that
can be used with an existing application program, without requiring that the application be rebuilt. It is
this capability that allows T&M instruments and their COM-based IVI-Component drivers to be
interchanged.

.NET Framework — The .NET Framework is an object-oriented API that simplifies application
development in a Windows environment. The .NET Framework has two main components: the common
language runtime and the .NET Framework class library.

Programming Guide (M9300-90080) 55 of 56

http://www.ivifoundation.org/

VISA (Virtual Instrument Software Architecture) — The VISA standard was created by the VXIplug&play
Foundation. Drivers that conform to the VXIplug&play standards always perform I/O through the VISA
library. Therefore if you are using Plug and Play drivers, you will need the VISA I/O library. The VISA
standard was intended to provide a common set of function calls that are similar across physical
interfaces. In practice, VISA libraries tend to be specific to the vendor’s interface.

VISA-COM — The VISA-COM library is a COM interface for I/O that was developed as a companion to
the VISA specification. VISA-COM I/O provides the services of VISA in a COM-based API. VISA-COM
includes some higher-level services that are not available in VISA, but in terms of low-level I/O
communication capabilities, VISA-COM is a subset of VISA. Agilent VISA-COM is used by its IVI-
Component drivers and requires that Agilent VISA also be installed.

References
1. Understanding Drivers and Direct I/O, Application Note 1465-3 (Agilent Part Number: 5989-0110EN)
2. Digital Baseband Tuning Technique Speeds Up Testing, by Bill Anklam, Victor Grothen and Doug Olney,

Agilent Technologies, Santa Clara, CA, April 15, 2013, Microwave Journal
3. www.ivifoundation.org

Programming Guide (M9300-90080) 56 of 56

http://www.ivifoundation.org/

The Modular Tangram
The four-sided geometric symbol that appears in Agilent modular
product literature is called a tangram. The goal of this seven-piece
puzzle is to create shapes—from simple to complex. As with a
tangram, the possibilities may seem infinite as you begin to create
a new test system. With a set of clearly defined elements—
hardware, software—Agilent can help you create the system you
need, from simple to complex.

DISCOVER the Alternatives …
… Agilent MODULAR Products

Agilent Advantage Services is committed to your
success throughout your equipment's lifetime.
www.agilent.com/find/advantageservices
Agilent Email Updates keep you informed on the
latest product, support and application information.
www.agilent.com/find/emailupdates

Agilent Channel Partners provide sales and solutions
support. For details, see
www.agilent.com/find/channelpartners

ISO 9001:2008 certified. For details, see
www.agilent.com/quality

www.pxisa.org

PICMGand the PICMG logo, CompactPCI and the CompactPCI logo,
AdvancedTCA and the AdvancedTCA logo are US registered trademarks of the
PCI Industrial Computers Manufacturers Group. “PCIe” and “PCI EXPRESS” are
registered trademarks and/or service marks of PC-SIG.Microsoft,Windows,
Visual Studio, Visual C++, Visual C#, and Visual Basic are either registered
trademark or trademarks of Microsoft Corporation.

Product descriptions in this document are subject to change without notice.

© Agilent Technologies, Inc. 2013

www.agilent.com
www.agilent.com/find/modular
www.agilent.com/find/pxi-vsag
For more information on Agilent Technologies' products,
applications or services, please contact your local Agilent office.
(For additional listings, go to www.agilent.com/find/assist.)
Americas
Canada (877) 894 4414
Brazil (11) 4197 3500
Mexico 01800 5064 800
United States (800) 829 4444

Asia Pacific
Australia 1 800 629 485
China 800 810 0189
Hong Kong 800 938 693
India 1 800 112 929
Japan 0120 (421) 345
Korea 080 769 0800
Malaysia 1 800 888 848
Singapore 1 800 375 8100
Taiwan 0800 047 866
Thailand 1 800 226 008

Europe & Middle East
Austria 43 (0) 1 360 277 1571
Belgium 32 (0) 2 404 93 40
Denmark 45 70 13 15 15
Finland 358 (0) 10 855 2100
France 0825 010 700 (0.125 €/minute)
Germany 49 (0) 7031 464 6333
Ireland 1890 924 204
Israel 972 3 9288 504 / 544
Italy 39 02 92 60 8484
Netherlands 31 (0) 20 547 2111
Spain 34 (91) 631 3300
Sweden 0200 88 22 55
Switzerland 0800 80 53 53
United Kingdom 44 (0) 118 9276201

www.agilent.com/find/pxi-vsag

	M9391A PXIe Vector Signal Analyzer and M9381A PXIe Vector Signal Generator Programming Guide
	What You Will Learn in this Programming Guide
	Related Websites
	Related Documentation
	Understanding the Overall Process Flow

	Before Programming, Install Hardware, Software, and Software Licenses
	Understanding the Application Programming Interfaces (API)for the AgModularVsa, M9391A PXIe VSA, and M938xA PXIe VSG
	IVI Instrument Classes (Defined by the IVI Foundation)
	IVI Compliant or IVI Class Compliant
	IVI Driver Types
	IVI Driver Hierarchy
	Instrument-Specific Hierarchies for the AgModularVsa, M9391A, and M938xA

	Naming Conventions Used to Program IVI Drivers
	General IVI Naming Conventions
	IVI-COM Naming Conventions

	Tutorial: Create a Project with IVI-COM Using C#
	Example Program 1: How to Print Driver Properties, Check for Errors, and Close Driver Sessions
	Disclaimer
	Alternate Example Program 1: How to Print Driver Properties, Check for Errors, and Close Driver Sessions
	Disclaimer
	Disclaimer

	Step 1 – Create a “Console Application”
	Step 2 – Add References
	Step 3 – Add using Statements
	To access the IVI drivers without having to specify or type the full path of each interface or enum

	Step 4 – Create Instances of the IVI-COM Drivers
	To create driver instances

	Step 5 – Initialize the Driver Instances
	To determine the VsaResourceName and VsgResourceName
	Set the Initialize()Parameters
	Call the Initialize() Method with the Set Parameters
	Understanding Initialize Options
	Understanding M9300A Reference Sharing
	Example: M9300A PXIe Reference as Part of the M9381A PXIe VSG Configuration of Modules
	Example: M9300A PXIe Reference as Part of the M9391A PXIe VSA Configuration of Modules
	Example: M9300A PXIe Reference as Part of the Both Configurations of Modules

	Step 6 – Write the Program Steps
	Example: Using the Soft Front Panel to Write Program Commands

	Step 7 – Close the Driver
	Building and Running a Complete Example Program Using Visual C#
	Example Programs
	Example Program 1: How to Print Driver Properties, Check for Errors, and Close Driver Sessions

	Understanding PA / FEM Measurements
	Test Challenges Faced by Power Amplifier Testing
	Performing a Channel Power Measurement, Using Immediate Trigger
	Example Program 2: How to Perform Channel Power Measurement, Using Immediate Trigger (Settings for WCDMA Signal)
	Pseudo-code of How to Perform Channel Power Measurement, Using Immediate Trigger
	Example Program 2: How to Perform Channel Power Measurement, Using Immediate Trigger

	Disclaimer

	Performing a WCDMA Power Servo and ACPR Measurement
	Example Program 3: How to Perform a WCDMA Power Servo and ACPR Measurement
	Pseudo-code of How to Perform a WCDMA Power Servo and ACPR Measurement
	Example Program 3: How to Perform a WCDMA Power Servo and ACPR Measurement

	Accessing Hardware-Specific Capabilities
	Disclaimer

	Glossary
	References

	Blank Page

